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Dynamic mesh adaption on unstructured grids is a powerful tool for com-
puting large-scale problems that require grid modifications to efficiently resolve so-
lution features. Unfortunately, an efficient parallel implementation is difficult to
achieve, primarily due to the load imbalance created by the dynamically-changing
nonuniform grid. To address this problem, we have developed PLUM, an automatic
portable framework for performing adaptive large-scale numerical computations in
a message-passing environment.

First, we present an efficient parallel implementation of a tetrahedral mesh
adaption scheme. Extremely promising parallel performance is achieved for various
refinement and coarsening strategies on a realistic-sized domain. Next we describe
PLUM, a novel method for dynamically balancing the processor workloads in adap-
tive grid computations. This research includes interfacing the parallel mesh adaption
procedure based on actual flow solutions to a data remapping module, and incor-
porating an efficient parallel mesh repartitioner. A significant runtime improvement
is achieved by observing that data movement for a refinement step should be per-
formed after the edge-marking phase but before the actual subdivision. We also
present optimal and heuristic remapping cost metrics that can accurately predict
the total overhead for data redistribution.

Several experiments are performed to verify the effectiveness of PLUM on
sequences of dynamically adapted unstructured grids. Portability is demonstrated
by presenting results on the two vastly different architectures of the SP2 and the Ori-
gin2000. Additionally, we evaluate the performance of five state-of-the-art partition-
ing algorithms that can be used within PLUM. It is shown that for certain classes of

unsteady adaption, globally repartitioning the computational mesh produces higher
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quality results than diffusive repartitioning schemes. We also demonstrate that a
coarse starting mesh produces high quality load balancing, at a fraction of the cost
required for a fine initial mesh. Results indicate that our parallel load balancing

strategy will remain viable on large numbers of processors.



ACKNOWLEGEMENTS

First, I would like to express my deepest gratitude to Rupak Biswas without
whom this thesis would never have been possible. I was truly fortunate to have such
a knowledgeable and generous mentor. Regardless of his busy schedule he always
found time to help me on my thesis. I especially would like to thank him for his
patience, encouragement, and most importantly his friendship.

I want to thank Oliver McBryan, Charbel Farhat, Xiao-Chuan Cai, and
Richard Byrd for serving on my committee.

I am deeply indebted to Roger Strawn. Qur collaboration on the prediction
and analysis of helicopter noise, provided the starting ground from which my thesis
was built.

I was fortunate for the opportunity to work with Robert Schreiber. His
wisdom and enthusiasm are an inspiration. One of his many contributions was the
development of a theoretical framework for addressing the reassignment problem.
I would also like to thank Hal Gabow for taking the time to share his algorithmic
insights with me.

I want to thank Andrew Sohn and Horst Simon for their collaboration.
Their work greatly contributed to many of the ideas presented in this thesis. I also
sincerely thank Vipin Kumar and George Karypis for their help with the MeTiS
partitioners, and Chris Walshaw for his help with the Jostle partitioners.

My heartfelt gratitude goes to my parents for their dedication and love. I
was incredibly lucky to have their constant support and encouragement. I owe much
to Arin Fishkin for her love, proofreading skills, and yummy risotto. Her companion-

ship made my research efforts more enjoyable and productive. Additionally, I thank



vi

Tim Barkow for his editing skills and years of easy living. I also want thank my dear
friends Larry Smith, Ted Rheingold, Alex Hart, Sam Boonin, and Eric Hecker for
providing me with necessary distractions during my thesis work.

Finally, I would like to thank Joe Oliger for his gracious support and rock
climbing beta. This work has been supported by NASA via Contract NAS 2-96027
between NASA and the Universities Space Research Association (USRA). This work
was performed at the Research Institute for Advanced Computer Science (RIACS),
NASA Ames Research Center, Moffett Field, CA.



CONTENTS

CHAPTER
1 INTRODUCTION . . . . . . . i 1
1.1 Thesis Objective . . . . . . . . .. . 0 e 1
1.2 Historical Review . . . . . .. ... ... ... ... ... 4
1.2.1 Combinatorial Methods . . . . . . ... ... .. ... ..... 4
1.2.2 Local Diffusive Methods . . . . . ... ... .. .. ...... 6
1.2.3 General Global Methods . . . .. ... ... .......... 9
1.2.4 Repartitioning Methods . . .. . ... ... .. ... ... .. 11
1.3 Thesis Outline . . . . .. ... ... . ... ... 16
2 PARALLEL TETRAHEDRAL MESH ADAPTION . . ... .. ... 18
2.1 Serial Mesh Adaption Overview . . ... ... ... ....... 20
2.2 Distributed-Memory Implementation . . ... ... ....... 23
2.2.1 Initialization . . . . .. .. .o oo e 24
2,22 Execution .. .. .. ... e 26
2.2.3 Finalization . .. ... ... ... o 29
2.3 Euler Flow Solver . . . . ... ... ... . ... ... ... 31
2.4 Experimental Results . . . ... ... ............... 32
2.4.1 Refinement Phase . . . .. . ... .. . ... 0o 34
2.4.2 Coarsening Phase . . . . ... ... ... ... . 38
2.4.3 [Initialization and Finalization Phases . . . . .. . ... .. .. 39
3 DYNAMIC LOAD BALANCING . ... ... ... ... ..., 41
3.1 Dual Graph of Initial Mesh . . . . . ... .. ... ... ..... 42

3.2 Preliminary Evaluation . . . . ... ... ... .......... 43



3.3 Parallel Mesh Repartitioning . . . . . ... ... ......... 44
3.4 Similarity Matrix Construction . . . . .. .. ... ... ..... 45
3.5 Processor Reassignment . . . . ... ... ............. 46
3.5.1 TotalVmetric . . .......... ... ... ........ 46
3.52 MaxVmetric .. ... ... ... ... ... .. ... .. ... 48
3.5.3 MaxSRmetric . . ... ...................... 50
3.5.4 Heuristic Algorithm . . . . . ... ... .. .... ... .... 52
36 CostCalculation . . ... ... ... ................. 54
3.7 DataRemapping . .......... ... ... ..... 58
3.8 Experimentalresults . . ... ................... 59
4 PORTABILITY AND REPARTITIONING ANALYSIS . .. ... .. 73
4.1 Helicopter rotortestcase . . . . . . ... ... .......... 73
4.1.1 PLUM on the Origin2000 . ... ................ 74
4.1.2 The redistribution cost model on the Origin2000. . . . . . . . 77
4.2 Unsteady simulation testcase .. ................. 79
4.2.1 Comparison of partitioners . . . . . .. ... ... ....... 82
422 SP2vs. Origin2000 . . ... ... ... ............. 86
4.2.3 Coarse vs. fineinitial mesh . . . . . .. ... ... . ..... 87
4.2.4 Growing vs.stablemesh . . ... ... . ... ...... ... 91
5 SUMMARY AND FUTUREWORK . ................. 94
5.1 Summary . . . . ... e e e e e e 94
52 Future Work . . .. .. ... .. ... L L 99

BIBLIOGRAPHY . .. ... .. .. . . . 102



TABLE

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1
3.2

3.3

4.1

4.2

4.3

TABLES

Progression of Grid Sizes through Refinement and Coarsening for
the Different Strategies . . . . . . . .. ... ...
Performance of Mesh Refinement when Edges are Bisected Randomly
Performance of Mesh Refinement when Edges are Bisected based
on Flow Solution . . . . . . .« . i e
Performance of “Load-Balanced” Mesh Refinement when Edges are
Bisected based on Flow Solution . . . . . .. ... ... .. .....
Quality of Load Balance Before and After Mesh Refinement
Performance of Mesh Coarsening . . . . .. ... .. ... ... ..
Performance of Initialization and Finalization Steps for REAL_1R
SLTAtEEY « « v v o v e e e e e e e e e e
Grid sizes for the three different refinement strategies . . . . . . ..
Comparison of five processor reassignment algorithms for the Real 2 R
caseonthe SP2with F=1. . .. ... ... .... . ........
Progression of Grid Size through a Sequence of Three Levels of
Adaption . . . . . ..
Execution time of 3D_TAG on the SP2 and the Origin2000 when
data is remapped before mesh refinement . . . . ... ... ...
Remapping time within PLUM on the SP2 and the Origin2000 when
data is redistributed before mesh refinement . . . . .. .. .. ...
Partitioning time on the SP2 for P=64 using a variety of partition-

ers for Sequence .l . . . .. ... o e e

ix

33
34

35

36

37

38

39
59

63

67

76

79



4.4

4.5

4.6

4.7

4.8

4.9

4.10

Load imbalance factor before and after mesh partitioning for P=64
using a variety of partitioners for Sequence 1 . . . . . ... ... ..
Percentage of cut edges before and after mesh partitioning for P=64
using a variety of partitioners for Sequence 1 . . . . . ... ... ..
Remapping time on an SP2 for P=64 using the default and our
heuristic strategies for Sequence_1 . . . . . ... ... ... .....
Partitioning and remapping times on the SP2 and the Origin2000
for P=32 using PMeTiS and DAMeTiS for Sequence.1 . . ... ..
Load imbalance factor and percentage of cut edges before and af-
ter mesh partitioning for P=32 using PMeTiS and DAMeTiS for
Sequence_l . . . . .. e
Partitioning and remapping times on an SP2 for P=32 using PMeTi$
and DAMeTiS for Sequence.3 . . ... ................
Load imbalance factor and percentage of cut edges before and af-
ter mesh partitioning for P=32 using PMeTiS and DAMeTiS for

Sequence_3 . . . .. .. .



FIGURE
1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

3.3

FIGURES

Overview of PLUM, our framework for parallel adaptive numerical
computation. . . . . . . ... Lo
Three types of subdivision are permitted for a tetrahedral element.
Sample edge-marking pattern for element subdivision. . . . . .. ..
An example showing the communication need to form the SPL for
ashared vertex. . . . . . . . . . L e e e
An example showing how boundary faces are represented at parti-
tion boundaries. . . . . . .. e e
A two-dimensional example showing communication during prop-
agation of the edge marking phase. . . .. .. ... . ........
An example showing how a new edge across a face is classified as
shared orinternal. . . . . . . . . . ... . oo
Cut-out view of the initial tetrahedral mesh. . . . . . ... ... ..
An example of a similarity matrix M for P = 4 and F' = 2. Only
the non-zero entries areshown. . . . . ... ... ... ... ...,
Various cost metrics of a similarity matrix M for P=4and F =1
using (a) optimal MWBG algorithm, (b) optimal BMCM algo-
rithm, (c) optimal DBMCM algorithm, and (d) our heuristic al-
gorithm. . .. .. .. ... .. ...
Pseudocode for our heuristic algorithm for solving the processor

reassignment problem. . .. .. ... ... oo

X1

21



3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11

4.1

4.2

4.3

4.4

4.5

xii

Speedup of the 3D_TAG parallel mesh adaption code when data is
remapped either after or before mesh refinement. . . ... ... .. 60
Remapping times within PLUM when data is remapped either after

or before mesh refinement. . . . . ... ... .. L. 61
Comparison of the optimal and heuristic MWBG remappers in

terms of the execution time (top) and the volume of data movement
(bottom) for the REAL_2R strategy. . . . .. ... .......... 62
Anatomy of execution times for the REAL_1R, REAL_2R, and REAL_3R
refinement strategies. . . . . .. .. ... ... ... ... L. 66
Maximum (top) and actual (bottom) impact of load balancing on

flow solver execution times for different mesh growth factors G. .. 68
Final adapted mesh and computed pressure contours in the plane

of the helicopter rotor. . . . .. .. ... ... ... ... ...... 69
Anatomy of execution times for the three levels of adaption. . ... 70
Remapping time as a function of the TotalV (top) and the MaxSR
(bottom) metrics. . . . ... .. ... 72
Speedup of 3D_TAG the Origin2000 when data is remapped either

after or before mesh refinement. . . . . . ... ... ..., 75
Remapping time within PLUM on the the Origin2000 when data is
redistributed either after or before mesh refinement. . . . . ... .. 77
Anatomy of execution times for the Real_1R, Real 2R, and Real_3R
refinement strategies on the Origin2000. .. ... ... ....... 78
Remapping time as a function of TotalV and MaxSR on the Ori-
gin2000. . .. ... e e 80
Initial and adapted meshes (after levels 1 and 5) for the simulated

unsteady experiment. . . . . .. . ... ... 81



xiil

4.6 Progression of grid sizes through nine levels of adaption for the
unsteady simulation. . . .. ..o 82
4.7 PMeTiS partitioning and remapping times using the heuristic strat-
egy for P=16 and 64 on an SP2 for Sequence_1 and Sequence 2. .. 89
4.8 Load imbalance factor and percentage of cut edges after mesh par-
titioning using PMeTiS for P=16 and 64 for Sequence_1 and Se-
quence_2. Note that the imbalance factor curves for the two se-

quences are overlaid. . . . . ... 90



CHAPTER 1
INTRODUCTION

Dynamic mesh adaption on unstructured grids is a powerful tool for com-
puting large-scale problems that require grid modifications to efficiently resolve so-
lution features. By locally refining and coarsening the mesh to capture physical phe-
nomena of interest, such procedures make standard computational methods more
cost effective. Unfortunately, an efficient parallel implementation of these adaptive
methods is rather difficult to achieve, primarily due to the load imbalance created
by the dynamically-changing nonuniform grid. This requires significant commu-
nication at runtime, leading to idle processors and adversely affecting the total
execution time. Nonetheless, it is generally thought that unstructured adaptive-
grid techniques will constitute a significant fraction of future high-performance su-
percomputing. Various dynamic load balancing methods have been reported to
date [17, 18, 20, 21, 22, 37, 42, 67, 70]; however, most of them either lack a global
view of loads across processors or do not apply their techniques to realistic large-scale

applications.

1.1 Thesis Objective

The purpose of this research effort is to efficiently simulate steady and
unsteady aerodynamic flows around realistic engineering-type geometries on multi-
processor systems. The computational cost and memory requirements of large-scale
fluid dynamic simulations is prohibitive on classical scalar computers, while vector
computers do not seem to keep up with the demands of todays CFD applications [15].

Our thesis objective is to build a portable system for efficiently performing adaptive
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Figure 1.1. Overview of PLUM, our framework for parallel adaptive numerical com-
putation.

large-scale flow calculations in a parallel message-passing environment. Figure 1.1
depicts our framework, called PLUM, for such an automatic system. It consists of
a flow solver and a mesh adaptor, with a partitioner and a remapper that load bal-
ances and redistributes the computational mesh when necessary. The mesh is first
partitioned and mapped among the available processors. A flow solver then runs
for several iterations, updating solution variables. Once an acceptable solution is
obtained, a mesh adaption procedure is invoked. It first targets edges for coarsening
and refinement based on an error indicator computed from the flow solution. The
old mesh is then coarsened, resulting in a smaller grid. Since edges have already
been marked for refinement, it is possible to exactly predict the new mesh before
actually performing the refinement step. Program control is thus passed to the load
balancer at this time. A quick evaluation step determines if the new mesh will be
so unbalanced as to warrant repartitioning. If the current partitions will remain ad-
equately load balanced, control is passed back to the subdivision phase of the mesh
adaptor. Otherwise, a repartitioning procedure is used to divide the new mesh into

subgrids. The new partitions are then reassigned to the processors in a way that



minimizes the cost of data movement. If the remapping cost is less than the com-
putational gain that would be achieved with balanced partitions, all necessary data
is appropriately redistributed. Otherwise, the new partitioning is discarded. The
computational mesh is then actually refined and the flow calculation is restarted.
Notice from the framework in Fig. 1.1 that splitting the mesh refinement
step into two distinct phases of edge marking and mesh subdivision allows the sub-
division phase to operate in a more load balanced fashion. In addition, since data
remapping is performed before the mesh grows in size due to refinement, a smaller
volume of data is moved. This, in turn, leads to signiﬁcant savings in the redis-
tribution cost. However, the primary task of the load balancer is to balance the
computational load for the flow solver while reducing the runtime communication.
This is important because flow solvers are usually several times more expensive than
mesh adaptors. In any case, it is obvious that mesh adaption, repartitioning, proces-
sor assignment, and remapping are critical components of the framework and must
be accomplished rapidly and efficiently so as not to cause a significant overhead to

the flow computation.



1.2 Historical Review

The introduction of grid adaption in a parallel environment generally inval-
idates the initial decomposition, since the computational requirements have changed
nonuniformly on each processor. Therefore it is critical that the load be dynamically
rebalanced as part of the adaptive calculation procedure. The general problem of dy-
namic load balancing has been widely studied in the literature and many techniques
have been proposed for parallel systems. Their performance depends on several
factors in addition to the specific application. These include the interconnection
network, the number of processors, and the size of the problem. The abstract goal

of load balancing can be stated as follows [73]:

Given a collection of tasks comprising a computation and a set of processors on which
these tasks can be executed, find the mapping of tasks to processors that minimize

the runtime of the computation.

Various methods of dynamic load balancing have been reported to date,
however, most of them lack a global view of loads across processors. Some of these
techniques are not scalable, others have only.been implemented on toy problems, .
many theoretical schemes are too complex to reasonably implement, and some meth-
ods fail to consider communication locality. A popular approach is to rely on local
migration methods where each nodes decisions are based only on local knowledge,
and loads are exchanged between neighboring processors. The following section ex-

amines some of the dynamic load balancing techniques in the literature.

1.2.1 Combinatorial Methods
One way of performing dynamic load balancing is through general combi-
natorial techniques such as simulated annealing or genetic algorithms. Simulated

Annealing (SA) [46] is a popular heuristic method for finding suboptimal solutions



to combinatorial problems. The technique is analogous to a method in statistical
mechanics designed to simulate the physical process of annealing. SA simulates
the slow cooling of solids as a way to approximate the solutions to combinatorial
problems. It works by iteratively proposing new distributions and evaluating their
quality. If the new solution is an improvement over the previous iteration that state
is accepted. Otherwise the new solution may be chosen according to a probability
which decreases as the temperature cools. This process continues until the solution
state is frozen and no further improvements can be made. SA requires the user to
specify several parameters including the starting temperature and cooling schedule.
In general, finding a combination of these parameters to produce a balanced work
load in a small amount of time is difficult, because these inputs may differ for each
problem.

Genetic Algorithms (GA) [45] are a model of machine learning which derive
their behavior from a metaphor based on the processes of natural evolution. It is
considered a general and robust optimization method. Briefly, GA starts with an
initial population which is typically generated randomly and consists of a set of
individuals, or in our case a work load distribution. A set of generic operators
are used to generate new individuals from the current population using a process
called reproduction, consisting of crossovers and mutations. The basis of GA is that
individuals which contribute to the minimization of the object function are more
likely to reproduce. Once again, a large number of parameters must be set for a
successful distribution.

In general, stochastic optimization techniques on their own are not a popu-
lar approach for solving load balancing problems. They can be slow, trapped in local
minima, and their behavior depends on many parameters which must be carefully
tuned for each application. These methods, however, may be very useful in fine

tuning an existing load distribution.



Another combinatorial approach is to use probabilistic techniques. In Ran-
dom Seeking [49), source processors randomly seek out sink processors for load bal-
ancing by flinging probe messages. The probes not only locate sinks, but also collect
load distribution information which is used to efficiently regulate load balancing
activities. This method works well for certain types of problems such as parallel
best-first branch and bound algorithms.

Random Matching [31] is an algorithm based on solving the abstract prob-
lem of Incremental Weight Migration on arbitrary graphs, where edge mappings are
randomly chosen based only on local information. This is a simple, randomized
algorithm which provably results in asymptotically optimal convergence toward a
perfect balance. In general these probabilistic techniques are not suitable for bal-
ancing adaptive mesh computations. They require too many iterations, could result
in disjoint subdomains, ignore edge weights, and send small messages across the

network resulting in a high cumulative start up cost overhead.

1.2.2 Local Diffusive Methods

Diffusion is a well know algorithm for load balancing in which tasks model
the heat equa,-tion by moving from heavily loaded processors to lightly loaded neigh-
bors. A processor’s neighbor may be defined by its hardware topology or the con-
nectivity of the distributed domain. Diffusion was first presented as a method for
load balancing in [20] and is defined as follows: For a system of P processors, let
w;(t) be the work load on processor 7 at time ¢. Adjust the workloads at time ¢ 4 1

as follows:

wit+ )= w()+ Y (ws(t) - wilt)) /2 (11)

JEN(3)
where N(i) is the set of all processors connected to processor i. This process can be

mapped onto the diffusion equation, and much is known about its properties. In par-

ticular, it can be shown that this process will eventually converge. The convergence



time, 7, however grows like 7 %2 which is rather high.

Kohring [42] presents a simple non-linear variant on the diffusion scheme
which considers strip decompositions of the domain. Each processor calculates its
own Joad, by measuring the elapsed CPU-time since the last load balancing step. If
a processor finds that one of its neighbors has needed more CPU-time than itself,
it transfers one complete row of link-cells to that neighbor. This algorithm shows
better convergence properties then the standard diffusion methods.

The basic diffusion algorithm is improved in [73] by using a second-order
unconditionally stable differencing scheme. This algorithm improves convergence by
allowing larger time steps to be taken without adding substantial complexity. The
task transfers are still limited to nearest neighbors in this. approach.

Sender Initiated Diffusion (SID) [74] is a highly distributed asynchronous
local approach which makes use of nearest neighbor load information to apportion
surplus load from heavily loaded processors to underloaded neighbors. Here proces-
sors whose loads exceed a certain prespecified threshold, apportion the excess load
to deficient neighbors. Receiver Initiated Diffusion (RID) is the converse of the SID
strategy in that underloaded processors request loads from overloaded neighbors.
For most cases RID has been shown as being a superior approach to SID.

Cyclic Pairwise Exchange is an algorithm presented by Hammond [32] in
which processor pairs are defined by the hardware interconnections. Pairwise ex-
changes of tasks are then performed to iteratively improve an imbalanced load. This
method has been shown to improve the mapping time of SA by up to a factor of six.
Unfortunately this approach works best for SIMD architectures, and task movements
are performed one at a time.

Tiling is another approach to dynamic load balancing originally based on

the work of Leiss and Reddy [47). This procedure is modified by Devine et al. [24]



to migrate finite elements between processors. Each processor is considered a neigh-
borhood center, where a neighbor is defined as that processor and all processors
which share its subdomain boundaries. Processors within a given neighborhood are
balanced with respect to each other using local performance measurements. Task
migration occurs from highly loaded to lightly loaded neighbors within each neigh-
borhood. This iterative process continues until the load is globally balanced. In [23]
only one iteration of the tiling algorithm is performed, thereby not achieving a global
balance in exchange for speed.

To incorporate more global information, Shephard et al. [58] use a modified
Tiling technique where the processors are hierarchically arranged as nodes in a tree.
The load is then balanced by iteratively migrating the work from heavily loaded
processors through the tree until the load distribution is within a specified tolerance.
This methodology has an improved worst case load imbalance over the flat Tiling
model if enough iterations are permitted.

We believe that these local iterative techniques are not ideally suited for
dynamically balancing unsteady flow calculations. These applications are prone to
dramatically shifting the load distribution between adaption phases, causing small
regions of the domain to suddenly incur high computational costs. Local diffusion
techniques would therefore be required to perform many iterations before global con-
vergence, or accept an unbalanced load in exchange for faster performance. Also,
by limiting task movement to nearest neighbors, a finite element may have to make
several hops before arriving at its final destination. Current hardware architectures
such as the IBM SP2 use wormhole routing making it unnecessary for a unit of work
to be moved to more than one processor. Since the remapping must be frequently
applied, its cost can become a significant part of the overall performance and must

therefore be minimized. By moving large chunks of work units directly to their



destinations, the high start up cost of interprocessor communication can be amor-
tized. We therefore assert that there exists a need for balancing strategies which can

globally coordinate the distribution of all workloads within the system.

1.2.3 General Global Methods

Many global load balancing approaches are addressed in the literature. The
Dimension Exchange Algorithm (DE) is a global technique which steps through each
dimension in a hypercube. At each step i a processor exchanges workload with its
dimension ¢ neighbor in such a way that their load becomes equal. After log(P)
passes, all P processors are guaranteed to have the same workload. DE has been
shown to outperform several local schemes [74] including nearest neighbor diffusion
and hierarchical balancing methods. This algorithm is ideal for hypercubes and store-
and-forward networks, but is not well suited for wormhole routed systems since the
global movement of data will usually require multiple hops.

Another approach to global load balancing is based on prefix computations

or scans [33].

A scan (@,V) on a vector V = (V4,---,V,) with the associative operator
@ gives as a result the vector of partial results (Ig, V1, V1 ® Vo, -+, Vi @ V) where

Ig is the identity for @.

This operation can be carried out in O(logP) time. Load balancing techniques
based on this operation are interesting because they preserve decomposition locality,
i.e., given a definition of a neighborhood, tasks which are neighbors before the load
balance step will be neighbors afterwards as well.

The algorithm by Baigioni [6] first performs a scan of the load on each
processor, from which it calculates the flow. This is defined as the difference between
the processor index multiplied by the average work and the value for the scan in that

processor. The absolute value of the flow in any particular processor represents the
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activity that must be moved to another the processor. This algorithm guarantees a
perfect load balance, but can only communicate a unit of work one step at a time and
is most suitable for SIMD architectures. A variation of this algorithm called Position
Scan Load Balancing (PSLB), communicates the work directly to the destination
processor, making it more suitable for MIMD systems [33]. This methodology is
currently limited to structured grids and does not consider subdomain boundary
quality.

A theoretical global technique by Bogleav [14] uses linear programming
algorithms to exactly load balance tasks on arbitrary topologies. This solution is
computed using the simplex method which is considered a fast and accurate op-
timization technique. Unfortunately the computation time is polynomial in the
number of elements which makes it prohibitively expensive within our framework.

Index-based algorithms are another approach to the partitioning problem
presented by Ou, Ranka, and Fox [51]. First, vertices of a graph are mapped onto one
dimensional list, which is then distributed among the processors by assigning con-
tiguous blocks of vertices to each partition. When the compuilational load changes,
the graph can be remapped by repartitioning the one-dimensional list. This requires
calculating the indices of the new vertices and combining them with the vertices of
the original list, which corresponds to merging an unsorted list of integers to a sorted
list. This operation can then be performed quickly in parallel. Unfortunately, the
index-based algorithms assume that only small perturbations are made in the load,
which does not hold true for unsteady flow problems. Subdomain interface quality
is also inferior to other methods, since mapping a three dimensional grid onto a one
dimension list results in degradation of boundary information.

In [58] an integrated system is built in a parallel framework which includes:
mesh generation, equation solution, mesh enrichment, mesh migration, and load

balancing. To date, this work mostly closely resembles our efforts. Here, two load
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balancing schemes are compared in an adaptive grid calculation on a 128 node IBM
SP2. The first is a global repartitioning scheme based on a parallel version of Iner-
tial Recursive Bisection (PIRB) while the second is the more iterative approach of
hierarchical tiling. PIRB has two advantages over IRB [44] in a parallel setting: its
execution time decreases as the number of processors decrease; and the distributed
mesh no longer needs to be gathered on one processor before the partitioning phase
begins, which can become an expensive operation in both time and space as the mesh
grows. The preliminary test results indicate that the iterative load migration scheme
tends to be more computationally expensive than the global PIRB algorithm, while
at the same time yielding lower quality subdomains. Although these tests are by
no means exhaustive, they do support our claim that a global methodology is the

superior approach for addressing dynamic load balancing on these types of problems.

1.2.4 Repartitioning Methods

It usually considered too expensive to repartition the entire domain in the
inner loop of adaptive flow calculations, due to the potentially high partitioning and
data movement cost. Some dynamic load balancing techniques reuse the original par-
tition by only considering the transfer of those elements located on the subdomains
boundaries. In the work of Vanderstraeten et al. [69] a decomposed domain under-
goes one level of adaptive refinement resulting in an unbalanced load. A comparison
is then made between retrofitting the original decomposition along its boundaries
(using SA) and performing the decomposition from scratch (using the Greedy tech-
nique of Farhat [57] followed by SA). The results indicate that the latter technique
performed faster, contained higher quality subdomains, and required fewer element
exchanges between partitions. Since the adaption phase created many new elements
in a small region, as is common in unsteady flows, the original decomposition is not

necessarily a good starting point for the retrofitting approach. Retrofitting is only
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useful when a small percentage of the elements are refined in a consistent manner
throughout the previously generated subdomains.

Many heuristics have been developed for graph partitioning since the op-
timal solution is an NP-hard problem [30]. Spectral bisection algorithms [25, 26)
are a class of partitioning techniques developed in the early 1970’s which are known
to produce high quality subdomains for a wide class of problems. These ideas were
extended in Recursive Spectral Bisection (RSB) by Simon [61] for partitioning finite
element meshes. Unfortunately, spectral methods are considered too expensive to
be performed within the inner loop of time critical computations. This is especially
true when the domain size grows in an adaptive refinement, since computing the
Fiedler vector for a problem of size n, is O(ny/n) [2]. Several attempts have been
made to integrate spectral techniques with dynamic load balancing. Walshaw and
Berzins [74] propose a method called Dynamic Recursive Spectral Bisection (DRSB),
which limits the repartitioning time by clustering internal vertices and only allowing
boundary elements to move across partitions. In other words, mesh elements which
are far enough away from an interprocessor boundary will be ignored during the
repartitioning phase, resulting in a clusters of mesh elements separated by a strip of
elements along the boundaries. The spectral partitioning algorithm then proceeds
on the reduced size graph, under the assumption that clustered nodes will remain
in their original partitions. This technique is only applicable under the assumption
that there will be a small change in the domain size, otherwise it reverts back to the
standard RSB method.

In [68] Driessche and Roose propose extending the (recursive) spectral bi-
section algorithm so that it applies to dynamically changing grids. They propose a
repartitioning technique which not only ensures that the grid subdomains are equally
sized with short interfaces, but attempts to minimize the cost of element transfers

across partition boundaries. Traditional spectral techniques do not incorporate this
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| .t component, which can be a very costly operation. This more complex problem
is modeled as a partitioning problem, by extending the original grid with virtual
edges and virtual vertices. One virtual vertex is added to each partition with virtual
edges added between the virtual vertex and the vertices that correspond to the grid
points that were originally assigned to that processor. The weight of a virtual edge
is equal to the cost of transferring the corresponding grid point to another processor.
A partition of the extended graph not only cuts ordinary edges but also a number
of virtual ones, thereby modeling both the application communication cost and the
element transfer cost. The run time of this method is comparable to traditional spec-
tral algorithms, but due to the extension, several iterations of the new partitioner
must be executed to achieve a perfect load balance.

The HARP [60] repartitioner has recently been proposed as a method for
balancing adaptive grids. This new algorithm is based on the observation that for
most discretized bodies, a significant portion of their structure can usually be cap-
tured with only a few of their eigenvectors. Therefore, a preprocessing step computes
and stores the appropriate number of eigenpairs. In order for these values to remain
valid, the connectivity of the graph must remain the same throughout the computa-
tion. This can be achieved by adding weights to the vertices of the original graph,
as elements become refined. Once the flow computation starts, the Fiedler vector no
longer needs to be computed at each iteration, resulting in partitioning times which
are several orders of magnitude faster than RSB. Note that since the connectivity of
the graph remains the saﬁe, the partitioner must assume that edge weights do not
change throughout the course of the computation. The impact of this restriction is
application specific.

Multilevel algorithms [34, 36, 40, 71] present a way to reduce the com-
putational requirement of partitioning, while maintaining high quality subdomains.

These algorithms reduce the size of the graph by collapsing vertices and edges. The
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smaller graph is then partitioned, and the results are uncoarsened to construct a par-
tition for the original graph. The most sophisticated schemes use several stages of
contraction and uncoarsening, and smooth the graph during the latter phase. It has
been shown [36] that for a variety of finite element problems, multilevel schemes can
provide higher partitioning quality than spectral methods at a lower cost. Chaco [34],
MeTiS [40], and Jostle [71] are three popular software package which provide several
powerful partitioning options. »

Recently, several parallel multilevel schemes have become available. An ad-
vantage of these algorithms is that they are fast enough to be included in the inner
loop of adaptive flow calculations. PMeTiS [41] and Jostle-MS {72] are parallel, mul-
tilevel, k-way partitioning codes. They are considered global algorithms since they
make no assumptions on how the graph is initially distributed among the processors.
PMeTiS uses a greedy graph growing algorithm for partitioning the coarsest graph,
and uncoarsens it by using a combination of boundary greedy and Kernighan-Lin (43)
refinement. Jostle-MS uses a greedy algorithm to partition the coarsest graph fol-
lowed by a parallel iterative scheme based on relative gain to optimize each of the
multilevel graphs.

UAMeTiS [62], DAMeTiS [62], and Jostle-MD [72] are diffusive multilevel
schemes which are designed to repartition adaptively refined meshes by modifying
the existing partitions. Reported results indicate that these algorithms produce par-
titions of quality comparable to that of their global counterparts, while dramatically
reducing the amount of data that needs to be moved due to repartitioning. UAMeTiS
and DAMeTiS perform local multilevel coarsening followed by multilevel diffusion
and refinement to balance the graphs while maintaining the edge-cut. The differ-
ence between these two algorithms is that UAMeTiS performs undirected diffusion

based on local balancing criteria, whereas DAMeTiS uses a 2-norm minimization
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algorithm at the coarsest graph to guide the diffusion, and is thus considered di-
rected. Jostle-MD performs graph reduction on the existing partitions, followed by
the optimization techniques used in Jostle-MS. One major difference between these
diffusive algorithms is that Jostle-MD employs a single level diffusion scheme, while
UAMeTiS and DAMeTiS use multilevel diffusion. An extensive performance anal-
ysis of the MeTiS and Jostle partitioners within PLUM is presented in Chapters 3

and 4.
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1.3 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we
present our parallel implementation of a tetrahedral mesh adaption code. The par-
allel version consists of C++ and MPI code wrapped around the original serial mesh
adaption program of Biswas and Strawn [12]. An ob ject-oriented approach allowed
a clean and efficient implementation. Experiments are performed on a realistic-
sized computational ﬁlesh used for a helicopter acoustics simulation. Results show
extremely promising parallel performance on 64 processors of an IBM-SP2.

Chapter 3 presents PLUM, an automatic portable framework for performing
adaptive numerical computations in a message passing environment. We describe the
implementation and integration of all major components within our dynamic load
balancing system. Several salient features of PLUM are described: (i) dual graph
representation, (i) parallel mesh repartitioner, (iii) optimal and heuristic remapping
cost functions, (iv) efficient data movement and refinement schemes, and (v) accurate
metrics comparing the computational gain and the redistribution cost. The code is
written in C and C++ using the MPI message-passing paradigm and executed on
an SP2. Results demonstrate that PLUM is an effective dynamic load balancing -
strategy which remains viable on a large number of processors.

Chapter 4 presents several experimental results that verify the effectiveness
of PLUM on sequences of dynamically adapted unstructured grids. We examine
portability by comparing results between the distributed-memory system of the IBM
SP2 and the Scalable Shared-memory MultiProcessing (S2MP) architecture of the
SGI/Cray Origin2000. Additionally, we evaluate the performance of five state-of-
the-art partitioning algorithms that can be used within PLUM. Results indicate that
a global repartitioner can outperform diffusive schemes in both subdomain quality
and remapping overhead. Finally, we demonstrate that PLUM works well for both

for both steady and unsteady adaptive problems with many levels of adaption, even



17

when using a coarse initial mesh. A finer starting mesh may be used to achieve
lower edge cuts and marginally better load balanceing. but is generally not worth
the increased partitioning and data remapping times.

Chapter 5 contains a summary of our work, and some future directions for

this research.



CHAPTER 2
PARALLEL TETRAHEDRAL MESH ADAPTION

Accurate simulation of the evolution of steady and unsteady aerodynamic
flows around complex bodies is a common challenge in many fields of computational
fluid dynamics. The unstructured discretization of the flow domain is an effective way
for dealing with the complex geometries and moving bodies. Hyperbolic PDEs are
dominated by the propagation and interaction of waves, which occupy a small portion
of the problem domain. Therefore the advantage of solutions on unstructured grids
in comparison to structured ones, is the excellent flexibility of adapting the mesh
to the local requirements of the solution. The drawbacks are the relatively high
demands on computational time and storage. This can be compensated by using
fine grids to represent the relatively small regions occupied by flow field phenomena,
while representing the remaining regions with coarser grids. These savings in storage
and CPU requirements- typically range between:50-100 compared to an overall fine
mesh [48] for a given spatial accuracy.

Two solution-adaptive strategies are commonly used with unstructured-
grid methods. Regeneration schemes generate a new grid with a higher or lower
concentration of points in different regions depending on an error indicator. A major
disadvantage of such schemes is that they are computationally expensive. This is a
serious drawback for unsteady problems where the mesh must be frequently adapted.
However, resulting grids are usually well-formed with smooth transitions between
regions of coarse and fine mesh spacing.

Local mesh adaption, on the other hand, involves adding points to the

existing grid in regions where the error indicator is high, and removing points from
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regions where the indicator is low. The advantage of such strategies is that relatively
few mesh points need to be added or deleted at each refinement/coarsening step for
unsteady problems. However, complicated logic and data structures are required to
keep track of the points that are added and removed.

For problems that evolve with time, local mesh adaption procedures have
proved to be robust, reliable, and efficient. By redistributing the available mesh
points to capture flowfield phenomena of interest, such procedures make standard
computational methods more cost effective. Highly localized regions of mesh refine-
ment are required in order to accurately capture shock waves, contact discontinuities,
vortices, and shear layers. This provides scientists the opportunity to obtain solu-
tions on adapted meshes that are comparable to those obtained on globally-refined
grids but at a much lower cost.

Advances in adaptive software and methodology notwithstanding, parallel
computational strategies will be an essential ingredient in solving complex real-life
problems. However, parallel computers are easily programmed with regular data
structures; so the development of efficient parallel adaptive algorithms for unstruc-
tured grids poses a serious challenge. Their parallel performance for supercomput-
ing applications not only depends on the design strategies, but also on the choice
of efficient data structures which must be amenable to simple manipulation without
significant memory contention (for shared-memory architectures) or communication
overhead (for message-passing architectures).

A significant amount of research has been done to design sequential algo-
rithms to effectively use unstructured meshes for the solution of fluid flow applica-
tions. Unfortunately, many of these techniques cannot take advantage of the power
of parallel computing due to the difficulties of porting these codes onto distributed-
memory architectures. Recently, several adaptive schemes have been successfully de-

veloped in a parallel environment. Most of these codes are based on two-dimensional



20

finite elements [3, 4, 7, 9, 16, 38, 39, 55), and some progress has been made towards
three-dimensional unstructured-mesh simulations [8, 50, 56, 58].

This chapter presents an efficient parallel implementation of a dynamic
mesh adaption code [12] which has shown good sequential performance. The parallel
version consists of an additional 3,000 lines of C++ with Message-Passing Interface
(MPI), allowing portability to any system supporting these languages. This code is
a wrapper around the original mesh adaption program written in C, and requires
almost no changes to the serial code. Only a few lines were added to link it with the
parallel constructs. An object-oriented approach allowed this to be performed in a

clean and efficient manner.

2.1 Serial Mesh Adaption Overview

We give a brief description of the tetrahedral mesh adaption scheme [12]
that is used in this work to better explain the modifications that were made for
the distributed-memory implementation. The code, called 3D_TAG, has its data
structures based on edges that connect the vertices of a tetrahedral mesh. This
means that the elements and boundary faces are defined by their edges rather than by
their vertices. These edge-based data structures make the mesh adaption procedure
capable of efficiently performing anisotropic refinement and coarsening. A successful
data structure must contain the right amount of information to rapidly reconstruct
the mesh connectivity when vertices are added or deleted while having reasonable
memory requirements.

" Recently, the 3D_TAG code has been modified to refine and coarsen hexahe-
dral meshes [13]. The data structures and serial implementation for the hexahedral
scheme are similar to those for the tetrahedral code. Their parallel implementa-
tions should also be similar; however, this chapter focuses solely on tetrahedral mesh

adaption.
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At each mesh adaption step, individual edges are marked for coarsening,
refinement, or no change, based on an error indicator calculated from the flow solu-
tion. Edges whose error values exceed a user-specified upper threshold are targeted
for subdivision. Similarly, edges whose error values lie below another user-specified
lower threshold are targeted for removal. Only three subdivision types are allowed
for each tetrahedral element and these are shown in Fig. 2.1. The 1:8 isotropic sub-
division is implemented by adding a new vertex at the mid-point of each of the six
edges. The 1:4 and 1:2 subdivisions can result either because the edges of a parent
tetrahedron are targeted anisotropically or because they are required to form a valid
connectivity for the new mesh. When an edge is bisected, the solution quantities are

linearly interpolated at the mid-point from its two end-points.

e AN

1:8 1:4 1:2

Figure 2.1: Three types of subdivision are permitted for a tetrahedral element.

Mesh refinement is pefformed by first setting a bit flag to one for each
edge that is targeted for subdivision. The edge markings for each element are then
combined to form a 6-bit pattern as shown in Fig. 2.2 where the edges marked with an
R are the ones to be bisected. Elements are continuously upgraded to valid patterns
corresponding to the three allowed subdivision types until none of the patterns show
any change. Once this edge marking is completed, each element is independently
subdivided based on its binary pattern. Special data structures are used to ensure

that this process is computationally efficient.
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Mesh coarsening also uses the edge-marking patterns. If a child element
has any edge marked for coarsening, this element and its siblings are removed and
their parent is reinstated. Parent edges and elements are retained at each refinement
step so they do not have to be reconstructed. Reinstated parent elements have their
edge-marking patterns adjusted to reflect that some edges have been coarsened.
The parents are then subdivided based on their new patterns by invoking the mesh
refinement procedure. As a result, the coarsening and refinement procedures share
much of the same logic.

There are some constraints for mesh coarsening. For example, edges cannot
be coarsened beyond the initial mesh. Edges must also be coarsened in an order that
is reversed from the one by which they were refined. Moreover, an edge can coarsen
if and only if its sibling is also targeted for coarsening. More details about these
coarsening constraints are given in [12].

Details of the data structures are given in [12]; however, a brief description
of the salient features is necessary to understand the distributed-memory imple-
mentation of the mesh adaption code. Pertinent information is maintained for the
vertices, elements, edges, and boundary.faces of the mesh. For each vertex, the
coordinates are stored in coord[3], the flow solution in soln[5], and a pointer to
the first entry in the edge sublist in edges. The edge sublist for a vertex contains

pointers to all the edges that are incident upon it. Such sublists eliminate extensive

6 54321 Edge number
001011 Pattern = 11

Figure 2.2: Sample edge-marking pattern for element subdivision.
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searches and are crucial to the efficiency of the overall adaption scheme. The tetra-
hedral elements have their six edges stored in tedge[6], the edge-marking pattern in
patt, the parent element in tparent, and the first child element in tchild. Sibling
elements always reside contiguously in memory; hence, a parent element only needs
a pointer to the first child. For each edge, we store its two end-points in vertex[2],
its parent edge in eparent, its two children edges in echild[2], the two boundary
faces it defines in bfac[2], and a pointer to the first entry in the element sublist in
elems. The element sublist for an edge contains pointers to all the elements that
share it. Finally, for each boundary face, we store the three edges in bedge[3], the
element to which it belongs in belem, the parent in bparent, and the first child in

bchild. Sibling boundary faces, like elements, are stored consecutively in memory.

2.2 Distributed-Memory Implementation

The parallel implementation of the 3D_TAG mesh adaption code consists
of three phases: initialization, execution, and finalization. The initialization step
consists of scattering the global data across the processors, defining a local numbering
scheme for each object, and creating the mapping for objects that are shared by
multiple processors. The execution step runs a copy of 3D_TAG on each processor
that refines or coarsens its local region, while maintaining a globally-consistent grid
along partition boundaries. Parallel performance is extremely critical during this
phase since it will be executed several times during a flow computation. Finally,
a gather operation is performed in the finalization step to combine the local grids
into one global mesh. Locally-numbered objects and the corresponding pointers are
reordered to represent one single consistent mesh.

In order to perform parallel mesh adaption, the initial grid must first be
partitioned among the available processors. A good partitioner should divide the

grid into equal pieces for optimal load balancing, while minimizing the number of
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edges along partition boundaries for low interprocessor communication. It is also
important that within our framework, the partitioning phase be performed rapidly.
Some excellent parallel partitioning algorithms are now available [40, 58, 60, 70];
however, we need one that is extremely fast while giving good load balance and low
edge cuts. For this set of experiments the parallel MeTis (PMeTiS) partitioner of
Karypis and Kumar [40] was used. The PMeTiS algorithm is briefly described in

Sec. 1.2.4, and a detailed analysis of its performance is presented in Secs. 3.8 and 4.2.

2.2.1 Initialization

The initialization phase takes as input the global initial grid and the corre-
sponding partitioning that maps each tetrahedral element to exactly one partition.
The element data and partition information are then broadcast to all processors
which, in parallel, assign a local, zero-based number to each element. Once the
elements have been processed, local edge information can be computed.

In three dimensions, an individual edge may belong to an arbitrary number
of elements. Since each element is assigned to only one partition, it is theoreti-
cally possible for an edge to be shared by all the processors. For each partition, a
local zero-based number is assigned to every edge that belongs to at least one ele-
ment. Each processor then redefines its elements in tedge[6] in terms of these local
edge numbers. Edges that are shared by more than one processor are identified by
searching for elements that lie on partition boundaries. A bit flag is set to distin-
guish between shared and internal edges. A list of shared processors (SPL) is also
generated for each shared edge. Finally, the element sublist in elems for each edge
is updated to contain only the local elements.

The vertices are initialized using the vertex[2] data structure for each
edge. Every local vertex is assigned a zero-based number in each partition. Next the

local edge sublist for each vertex is created from the appropriate subset of the global
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edges array. Like shared edges, each shared vertex must be identified and assigned
its SPL. A naive approach would be to thread through the data structures to the
elements and their partitions to determine which vertices lie on partition boundaries.
A faster approach is based on the following two properties of a shared vertex: it must
be an end-point for at least one shared edge, and its SPL is the union of its shared
edges’ SPLs. However, some communication is required when using this method.
An example is shown in Fig. 2.3 where the SPL is being formed in PO for the center
vertex that is shared by three other processors. Without communication, PO would
incorrectly conclude that the vertex is shared only with P1 and P3. For each vertex
containing a shared edge in its edges sublist, that edge’s SPL is communicated to
the processors in the SPLs of all other shared edges until the union of all the SPLs
is formed. For the cases in this paper, this process required no more than three
iterations, and all shared vertices were processed as a function of the number of

shared edges plus a small communication overhead.

Before communication After communication
PO shares center vertex with P1, P3 PO shares center vertex with P1, P2, P3

Figure 2.3. An example showing the communication need to form the SPL for a
shared vertex.

The final step in the initialization phase is the local renumbering of the
external boundary faces. Since a boundary face belongs to only one element, it is
never shared among processors. Each boundary face is defined by its three edges in
bedge[3], while each edge maintains a pair of pointers in bfac[2] to the boundary

faces it defines. Since the global mesh is closed, an edge on the external boundary
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is shared by exactly two boundary faces. However, when the mesh is partitioned,
this is no longer true. An example is shown in Fig. 2.4. An affected edge creates
an empty ghost boundary face in each of the two processors for the execution phase

which is later eliminated during the finalization stage.

GBF8 Ghost ™., “.| LBFo

Before partitioning After partitioning
Global edge GES shared by GES stored as LE1 and LE3 in PO and P1
global bdy faces GBF7 and GBF8 GBF7 as LBF3 in PO; GBF8 as LBFO in P1

Figure 2.4. An example showing how boundary faces are represented at partition
boundaries.

A new data structure has been added to the serial code to represent all
this shared information. Each shared edge and vertex contains a two-way mapping
between its local and its global numbers, and a SPL of processors where its shared
copies reside. The maximum additional storage depends on the number of processors
used and the fraction of shared objects. For the cases in this chapter, this was less

than 10% of the memory requirements of the serial version.

2.2.2 Execution

The first step in the actual mesh adaption phase is to target edges for re-
finement or coarsening. This is usually based on an error indicator for each edge that
is computed from the flow solution. This strategy results in a symmetrical marking
of all shared edges across partitions since shared edges have the same flow and ge-
ometry information regardless of their processor number. However, elements have

to be continuously upgraded to one of the three allowed subdivision patterns shown
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in Fig. 2.1. This causes some propagation of edges being targeted that could mark
local copies of shared edges inconsistently. This is because the local geometry and
marking patterns affect the nature of the propagation. Communication is therefore
required after each iteration of the propagation process. Every processor sends a
list of all the newly-marked local copies of shared edges to all the other processors
in their SPLs. This process may continue for several iterations, and edge markings
could propagate back and forth across partitions.

Figure 2.5 shows a two-dimensional example of two iterations of the prop-
agation process across a partition boundary. The process is similar in three dimen-
sions. Processor PQ marks its local copy of shared edge GE1 and communicates that
to P1. P1 then marks its own copy of GE1, which causes some internal propagation
because element marking patterns must be upgraded to those that are valid. Note
that P1 marks its third internal edge and its local copy of shared edge GE2 during
this phase. Information about the shared edge is then communicated to PO, and
the propagation phase terminates. The four original triangles can now be correctly

subdivided into a total of 12 smaller triangles.

--- Shared edge
@ Shared mark — Internal edge
© Internal mark - New edge

Figure 2.5. A two-dimensional example showing communication during propagation
of the edge marking phase.

Once all edge markings are complete, each processor executes the mesh
adaption code without the need for further communication, since all edges are con-

sistently marked. The only task remaining is to update the shared edge and vertex
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information as the mesh is adapted. This is handled as a post-processing phase.

New edges and vertices that are created during refinement are assigned
shared processor information that depends on several factors. Four different cases
can occur when new edges are created.

e If an internal edge is bisected, the center vertex and all new edges incident on
that vertex are also internal to the partition. Shared processor information is not
required in this case.

o If a _shared edge is bisected, its two children and the center vertex inherit its SPL,
since they lie on the same partition boundary.

o If a new edge is created in the interior of an element, it is internal to the par-
tition since processor boundaries only lie along element faces. Shared processor

information is not required.

o If a new edge is created that lies across an element face, communication is required
to determine whether it is shared or internal. If it is shared, the SPL must be
formed.

All the cases are straightforward, except for the last one. If the intersection
of the SPLs of the two end-points of the new edge is null, the edge is internal. Oth-
erwise, communication is required with the shared processors to determine whether
they have a local copy of the edge. This communication is necessary because no
information is stored about the faces of the tetrahedral elements. An alternate solu-
tion would be to incorporate faces as an additional object into the data structures,
and maintaining it through the adaption. However, this does not compare favor-
ably in terms of memory or CPU time to a single communication at the end of the
refinement procedure.

Figure 2.6 shows the top view of a tetrahedron in processor PO that shares
two faces with P1. In PO, the intersection of the SPLs for the two end-points of all

the three new edges LE1, LE2, and LE3 yields P1. However, when P0 communicates
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this information to P1, P1 will only have local copies corresponding to LE1 and LE2.

Thus, PO will classify LE1 and LE2 as shared edges but LE3 as an internal edge.

Shared face with P1
LE1 LE2 [J Internal face of PO
— Shared edge with P1
--- Internal edge of PO

Figure 2.6. An example showing how a new edge across a face is classified as shared
or internal.

The coarsening phase purges the data structures of all edges that are re-
moved, as well as their associated vertices, elements, and boundary faces. No new
shared processor information is generated since no mesh objects are created during
this step. However, objects are renumbered as a result of compaction and all internal
and shared data are updated accordingly. The refinement routine is then invoked to

generate a valid mesh from the vertices left after the coarsening.

2.2.3 Finalization

Under certain conditions, it is necessary to create a single global mesh after-
one or more adaption steps. Some post processing tasks, such as visualization, need
to processes the whole grid simultaneously. Storing a snapshot of a grid for future
restarts could also require a global view. Our finalization phase accomplishes this
goal by connecting the individual subgrids into one global data structure.

Each local object is first assigned a unique global number. Next, all lo-
cal data structures are updated in terms of these global numbers. Finally, gather
operations are performed to a host processor to create the global mesh. Individ-
ual processors are responsible for correctly arranging the data so that the host only

collects and concatenates without further processing.
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It is relatively simple to assign global element numbers since elements are
not shared among processors. By performing a scan-reduce add on the total number
of elements, each processor can assign the final global element number. The global
boundary face numbering is also done similarly since they too are not shared among
Processors.

Assigning global numbers to edges and vertices is somewhat more compli-
cated since they may be shared by several processors. Each shared edge (and vertex)
is assigned an owner from its SPL which is then responsible for generating the global
number. Owners are randomly selected to keep the computation and communication
loads balanced. Once all processors complete numbering their edges (and vertices),
a communication phase propagates the global values from owners to other processors
that have local copies.

After global numbers have been assigned to every object, all data structures
are updated to contain consistent global information. Since elements and boundary
faces are unique in each processor, no duplicates exist. All unowned edge copies are
removed from the data structures, which are then compacted. However, the element
sublists in elems cannot be discarded for the unowned edges. Some communication
is required to adjust the pointers in the local sublists so that global sublists can be
formed without any serial computation. The pair of pointers in bfac[2] that were
split during the initialization phase for shared edges are glued back by communicating
the boundary face information to the owner. Vertex data structures are updated
much like edges except for the manner in which their edge sublists in edges are
handled. Since shared vertices may contain local copies of the same global edge
in their sublists on different processors, the unowned edge copies are first deleted.
Pointers are next adjusted as in the elems case with some communication among
Processors.

At this time, all processors have updated their local data with respect to
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their relative positions in the final global data structures. A gather operation by a
host processor is performed to concatenate the local data structures. The host can
then interface the global mesh directly to the appropriate post-processing module

without having to perform any serial computation.

2.3 Euler Flow Solver

An important component of the mesh adaption procedure is a numerical
solver. Since we are currently interested in rotorcraft computational fluid dynamics
(CFD) problems, we have chosen an unstructured-grid Euler flow solver [64] for the
numerical calculations in this paper. It is a finite-volume upwind code that solves for
the unknowns at the vertices of the mesh and satisfies the integral conservation laws
on nonoverlapping polyhedral control volumes surrounding these vertices. Improved
accuracy is achieved by using a piecewise linear reconstruction of the solution in
each control volume. For helicopter problems, the Euler equations are written in an
inertial reference frame so that the rotor blade and grid move through stationary
air at the specified rotational and translational speeds. Fluxes across each control
volume are computed using the relative velocities between the moving grid and the
stationary far field. For a rotor in hover, the grid encompasses an appropriate fraction
of the rotor azimuth. Periodicity is enforced by forming control volumes that include
information from opposite sides of the grid domain. The solution is advanced in time
using conventional explicit procedures.

The code uses an edge-based data structure that makes it particularly com-
patible with the 3D_TAG mesh adaption procedure. Furthermore, since the number
of edges in a mesh is significantly smaller than the number of faces, cell-vertex edge
schemes are inherently more efficient than cell-centered element methods. Finally,
an edge-based data structure does not limit the user to a particular type of volume

element. Even though tetrahedral elements are used in this paper, any arbitrary
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combination of polyhedra can be used [13]. This is also true for our dynamic load

balancing procedure.

2.4 Experimental Results

The parallel 3D_TAG procedure was originally implemented on the wide
node IBM SP2 distributed-memory multiprocessor located at NASA Ames Research
Center. The code is written in C and C++, with the parallel activities in MPI
for portability. Note that no SP2-specific optimizations were used to obtain the
performance results reported in this section. Portability results are presented in
Chapter 4.

The computational mesh is the one used to simulate the acoustics experi-
ment of Purcell [54] where a 1/7th scale model of a UH-1H helicopter rotor blade was
tested over a range of subsonic and transonic hover-tip Mach numbers. Numerical
results and a detailed report of the simulation are given in {65]. This chapter reports
only on the performance of the distributed-memory version of the mesh adaption

code. A cut-out view of the initial tetrahedral mesh is shown in Fig 2.7.

Figure 2.7: Cut-out view of the initial tetrahedral mesh.
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Performance results for the parallel code are presented for one refinement
and one coarsening step using various edge-marking strategies. Six strategies are
used for the refinement step. The first set of experiments, denoted as RANDOM_1R,
RANDOM_2R, and RANDOM_3R, consists of randomly bisecting 5%, 33%, and 60% of
the edges in the mesh, respectively. The second set, denoted as REAL_1R, REAL_2R,
and REAL_3R, consists of bisecting the same numbers of edges using an error indica-
tor [65] derived from the actual flow solution described in Sec. 2.3. These strategies
represent significantly different scenarios. In general, the RANDOM cases are expected
to behave somewhat ideally because the computational loads are automatically bal-

anced.

Table 2.1. Progression of Grid Sizes through Refinement and Coarsening for the
Different Strategies

[ l Vertices | Elements | Edges I Bdy Faces |

Initial Mesh | 13,967 | 60,968 | 78,343 | 6,818
REFINEMENT

RANDOM_IR 18,274 | 82,417 | 104,526 7,672
ReEAL_IR 17,880 | 82,489 | 104,209 7,682
RANDOM 2R 39,829 | 201,734 | 246,949 10,774
REAL_ZR 39,332 | 201,780 | 247,115 12,008
RANDOM 3R 60,916 | 320,919 | 380,686 15,704
REAL_3R 61,161 | 321,841 | 391,233 16,464
COARSENING

RANDOM _2C 21,756 | 100,537 | 126,448 8,312
REAL-2C 20,998 | 100,124 | 125,261 8,280

Since the coarsening procedure and performance are similar to the refine-
ment method, only two cases are presented where 7% of the edges in the refined
meshes obtained with the RANDOM_2R and the REAL_2R strategies are respectively
coarsened randomly (RANDOM_2C) or based on actual flow solution (REAL_2C). Ta-
ble 2.1 presents the progression of grid sizes through the two adaption steps for each

edge-marking strategy.



2.4.1 Refinement Phase

Table 2.2 presents the timings and parallel speedup for the refinement
step with the random marking of edges (strategies RANDOM_1R, RANDOM_2R, and
RANDOM_3R). Performance is excellent with efficiencies of more than 83% on 32
processors and 76% on 64 processors for the RANDOM_3R case. Parallel mesh re-
finement shows a markedly better performance for RANDOM_3R due to its bigger
computation-to-communication ratio. In general, the total speedup will improve as
the size of the refined mesh increases. This is because the mesh adaption time will

increase while the percentage of elements along processor boundaries will decrease.

Table 2.2: Performance of Mesh Refinement when Edges are Bisected Randomly

RanpboM_1R RAaNDOM_2R RanpoM_3R
Edges | Cmp | Cmm | Spd Cmp | Cmm | Spd Cmp | Cmm | Spd
Shared | Time | Time Up | Time | Time Up | Time | Time Up
0.0% | 7.044 | 0.000 | 1.00 | 26.904 | 0.000 { 1.00 { 45.015 | 0.000 | 1.00
1.9% | 3.837 | 0.001 1.84 | 13.878 | 0.002 | 1.94 | 22.762 | 0.003 | 1.98
3.7% [ 2.025] 0.002 | 3.48 | 7.605| 0.004 | 3.54 { 11.569 | 0.004 | 3.89
8 6.6% | 1.068 | 0.003 | 6.58 | 4.042 | 0.006 | 6.65 | 5.913 | 0.006 | 7.61
16 88% [ 0.587 | 0.007 | 11.86 [ 2.293 | 0.013 | 11.67 | 3.191 | 0.008 | 14.07
32| 11.6% [ 0330 ] 0.010 | 20.72 | 1.338 | 0.022 | 19.78 | 1.678 | 0.013 | 26.62
64 | 15.3% [ 0.191 | 0.023 | 32.92 | 0.711 | 0.040 | 35.82 { 0.896 | 0.029 | 48.66

S| bo| w0

Notice also from Table 2.2 that the communication time is less than 3%
of the total time for up to 32 processors for all three cases. On 64 processors,
the communication time although still quite small, is only an order of magnitude
smaller than the computation time for RANDOM_1R. This begins to adversely affect
the parallel speedup and indicates that the saturation point has been reached for
this case in terms of the number of processors that should be used. Each partition
contains less than 1,000 elements with more than 15% of the edges on partition
boundaries when 64 processors are used. Since additional work and storage are
necessary for shared edges, the speedup deteriorates as the percentage of such edges

increases. The situation is much better for RANDOM_3R since the computation time
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is significantly higher.

Table 2.3. Performance of Mesh Refinement when Edges are Bisected based on Flow
Solution

REAL_1R REAL_2R REAL_3R
Edges | Cmp | Cmm | Spd Cmp | Cmm | Spd Cmp | Cmm | Spd
Shared | Time | Time | Up | Time | Time Up | Time | Time Up

0.0% | 5.902 | 0.000 | 1.00 | 23.780 | 0.000 [ 1.00 | 41.702 | 0.000 | 1.00
19% | 3.979 | 0.002 | 1.48 | 18.117 | 0.003 | 1.31 | 26.317 | 0.003 | 1.58
3.7% | 2.530 | 0.002 | 2.33 | 9.173 | 0.002 | 2.59 | 14.266 | 0.002 | 2.92
6.6% | 1.589 | 0.003 | 3.71 | 7.091 0.004 } 3.35 |- 8430 0.003 } 4.95
16 8.8% | 1.311 | 0.006 | 4.48 | 4.046 { 0.006 | 5.87 | 4.363 | 0.004 | 9.55
32| 11.6% [ 0.879 | 0.009 | 6.65 | 2.277 | 0.010 | 10.40 | 2.278 | 0.007 | 18.25
64| 153% | 0.616 | 0.024 [ 9.22 | 1.224 | 0.017 | 19.16 { 1.148 | 0.012 | 35.95

oo| i po| | @

Table 2.3 shows the timings and speedup when edges are marked using an
actual flow solution-based error indicator. Performance is extremely poor, especially
for REAL_1R and REAL_2R, with speedups of only 9.2X and 19.2X on 64 proces-
sors, respectively. This is because mesh adaption for practical problems occurs in a
localized region, causing an almost worst case load-balance behavior. Elements are
targeted for refinement on only a small subset of the available processors. Most of
the processors remain idle since none of their assigned elements need to be refined.
Performance is somewhat better for the REAL_3R strategy since the refinement re-
gion is much larger. Since 60% of all edges are bisected in this case, most of the
processors are busy doing useful work. This is reflected by an efficiency of more than
56% on 64 processors.

Note also from Table 2.3 that the communication times constitute a much
smaller fraction of the total time compared to the results in Table 2.2. This is due
to the difference in the distribution of bisected edges. The RANDOM cases require
significantly more communication among processors at the partition boundaries be-
cause refinement is scattered all over the problem domain. The REAL cases, on the
other hand, require much less communication since the refined regions are localized

and mostly contained within partitions.
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Poor parallel performance of the mesh refinement code for the three REAL
strategies is due to severe load imbalance. It is therefore worthwhile trying to load
balance this phase of the mesh adaption procedure as much as possible. This can
be achieved by splitting the mesh refinement step into two distinct phases of edge
marking and mesh subdivision. After edges are marked for bisection, it is possible
to exactly predict the new refined mesh before actually performing the subdivision
phase. The mesh is repartitioned if the edge markings are skewed beyond a specified
tolerance. All necessary data is then appropriately redistributed and the mesh ele-
ments are refined in their destination processors. This enables the subdivision phase
to perform in a more load-balanced fashion. Additionally, a smaller volume of data
has to be moved around since remapping is performed before the mesh grows in size
due to refinement. A performance analysis of the remapping procedure is presented
in Chapters 3 and 4.

Table 2.4. Performance of “Load-Balanced” Mesh Refinement when Edges are Bi-
sected based on Flow Solution

REAL_1R REAL_2R REAL_3R

Cmp |[Cmm | Spd| Cmp |Cmm | Spd| Cmp | Cmm | Spd

P | Time | Time Up | Time | Time Up | Time | Time Up
115.902 ] 0.000] 1.00 [ 23.780 | 0.000 | 1.00 [ 41.702 | 0.000 | 1.00
2133111 0.001] 1.78 | 12.059 | 0.001 | 1.97 | 21.592 | 0.001 | 1.93
411980 0.001 | 298| 6.733| 0.001 | 3.53 | 10.975 | 0.002 | 3.80
81369 0.003| 4.30 | 3.430| 0.004 | 6.92| 5.678 | 0.004 | 7.34
16 | 0.702 { 0.006 | 8.34 1.840 | 0.006 | 12.88 | 2.899 | 0.004 | 14.37
32 [0.414 ] 0.011 | 13.890 | 1.051 | 0.010 | 22.41 | 1.484 | 0.006 | 27.99
64 | 0.217 [ 0.030 | 23.89 | 0.528 | 0.022 | 43.24 | 0.777 | 0.017 | 52.52

Using this methodology, the three REAL cases were run again. Table 2.4
presents the performance results of this “load-balanced” mesh refinement step. Com-
pared to the results in Table 2.3, the parallel speedups are now much higher. In

fact, the speedups for REAL_2R consistently beats the corresponding speedups for
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RANDOM_2R, while REAL_3R outperforms RANDOM_3R when more than eight pro-
cessors are used. Even though the RANDOM cases are expected to behave somewhat
ideally, these results show that explicit load balancing can do better. An efficiency
of 82% is attained for REAL_3R on 64 processors, thereby demonstrating that mesh
adaption can deliver excellent speedups if the marked edges are well-distributed
among the processors. Communication requires a larger fraction of the total time
for the cases in Table 2.4 than for the cases in Table 2.3. This is because the mesh
refinement work is distributed among more processors after load balancing. How-
ever, communication times are still relatively small, requiring less than 4% of the

total time for all runs except for REAL_1R on 64 processors.

Table 2.5: Quality of Load Balance Before and After Mesh Refinement

RaNDOM_3R | NLB REAL_3R | LB REAL_3R

P Before [ After | Before | After | Before ] After
1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

2 1.000 | 1.016 | 1.000 | 1.556 | 1.406 | 1.000

4 1.000 | 1.033 | 1.000 | 2.188 | 1.948 | 1.000

8 1.000 | 1.085 | 1.000| 6.347 | 2.654 | 1.000

16 1.000 | 1.167 | 1.000 | 5.591 | 4.025 | 1.000
32 1.001 | 1.226 | 1.001 | 7.987 | 4.212 | 1.000
64 1.005 | 1.506 | 1.005| 8.034 | 6.709 | 1.004

The effect of load balancing the refined mesh before performing the actual
subdivision can be seen more directly from the results presented in Table 2.5 for
RaNDOM_3R and REAL_3R. The quality of load balance is defined as the ratio of the
number of elements on the most heavily-loaded processor to the number of elements
on the most lightly-loaded processor. For the RANDOM_3R strategy, the mesh was
refined without any load balancing. Two different sets of results are presented for
REAL_3R: one without load balancing (NLB) and the other using the technique of
load-balanced mesh refinement (LB). Notice that the quality of load balance before

refinement is excellent, and identical, for both RANDOM_3R and NLB REAL_3R
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because the initial mesh is partitioned using PMeTiS [40]. However, after mesh
refinement, the load imbalance is severe, particularly for NLB REAL_3R. The load
imbalance is not too bad for RANDOM_3R since edges are randomly marked for
refinement. This is reflected by the difference in the speedup values in Tables 2.2
and 2.3. For LB REeaL_3R, the initial mesh is repartitioned after edge marking
is complete. This imbalances the load before refinement, but generates excellently
balanced partitions after subdivision is complete. It also improves the speedup values

significantly.

2.4.2 Coarsening Phase

The coarsening phase consists of three major steps: marking edges to
coarsen, cleaning up all the data structures by removing those edges and their asso-
ciated vertices and tetrahedral elements, and finally invoking the refinement routine

to generate a valid mesh from the vertices left after the coarsening.

Table 2.6: Performance of Mesh Coarsening

RaNpom_2C REAL_2C

Comp | Comm | Comm Total | Comp | Comm | Comm | Total
p Time Time Time | Speedup | Time Time Time | Speedup
1 3.619 2.364 0.001 1.00 3.989 2.246 0.000 1.00
2 1.832 1.352 0.002 1.88 2.026 1.283 0.000 1.88
4 0.963 | 0.782 | 0.004 3.42 1.066 | 0.854 | 0.000 3.25
8

6

0.572 | 0.498 | 0.005 5.57 0.600 | 0.498 | 0.000 5.68
0.303 | 0.287 | 0.008 10.01 0.334 | 0.279 | 0.000 10.17
32 0.170 { 0.170 | 0.013 16.95 0.167 | 0.161 | 0.000 19.01
64 0.070 | 0.098 | 0.024 31.17 0.093 { 0.097 | 0.000 32.82

Timings and parallel speedup for the RaANDOM _2C and the REAL_2C coars-
ening strategies are presented in Table 2.6. Note that the follow-up mesh refinement
times are not included. This was done in order to demonstrate the parallel per-
formance of the modules that are only required during the coarsening phase. The

computation time in Table 2.6 is the time required to mark edges for coarsening.
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Notice that the communication time is generally negligible for RANDOM_2C and
identically zero for REAL_2C. .No communication was required for REAL_2C to de-
cide which edges to coarsen. The amount of communication needed during the
coarsening phase depends both on the problem and the nature of the coarsening
strategy; however, the situation can never be worse than the corresponding RAN-
DOM case. The cleanup time, on the other hand, is always a significant fraction of
the total time. The cleanup time decreases as more and more processors are used
due to the reduction in the local mesh size for each individual partition; however,
since it depends on the fraction of shared objects, performance deteriorates as the
problem size is over-saturated by processors. For instance, even though the total
efficiency is about 50% for 64 processors for the results in Table 2.6, the efficiency

when considering only the cleanup times is barely 37%.

2.4.3 Initialization and Finalization Phases

Table 2.7. Performance of Initialization and Finalization Steps for REAL_1R Strategy

Initialization Finalization
Comp | Bcast Total Comp | Gather Total
Time | Time | Speedup | Time Time | Speedup

6.098 | 0.344 1.00 11.380 | 1.227 1.00
3.315 | 0.677 1.61 8.309 | 1.154 1.33
1.807 | 1.199 2.14 4.410 | 1.136 2.27
1.074 | 0.857 3.34 3.340 | 1.169 2.80
0.622 | 1.022 3.92 1.973 | 1.202 3.97
0.378 | 1.253 3.95 1.125 | 1.357 5.08
0.330 | 1.605 3.33 0.652 | 1.497 5.87

DW=
B | o= |||

Recall from Fig. 1.1 that unlike the execution phase where the actual adap-
tion is performed, it is not critical for the initialization and finalization procedures
to be very efficient since they are used rarely (or only once) during a flow computa-
tion. Table 2.7 presents the results for these two phases for the REAL_1R strategy.

The initialization step is thus performed on the starting mesh consisting of 60,968
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elements, while the finalization phase is for the refined mesh consisting of 82,489 el-
ements. It is apparent from the timings that the performance bottleneck for the two
steps are the global broadcast (one-to-all) and gather (all-to-one) communication
patterns, respectively. These times generally increase with the number of processors
so a speedup cannot be expected. However, the computational sections of these
procedures do show favorable speedups of 18.5X and 17.5X on 64 processors. In any
case, the overall run times of these routines are acceptable for our purposes. Note
that the broadcast and gather times are non-zero even for a single processor because
the current implementation uses a host to perform the data 1/O. The number of
processors shown in Table 2.7 indicates those that are actually performing the mesh

adaption.



CHAPTER 3
DYNAMIC LOAD BALANCING

In this chapter, we present a novel method, called PLUM, to dynamically
balance the processor workloads for unstructured adaptive-grid computations with
a global view. Portions of this work reported earlier [10, 11, 52, 53, 63] have success-
fully demonstrated the viability and effectiveness of our load balancing framework.
All major components within PLUM have now been completely implemented and
integrated. This includes interfacing the parallel mesh adaption procedure based
on actual flow solutions to a data remapping module, and incorporating an efficient
parallel mesh repartitioner. An SP2 data remapping cost model is also proposed
that can accurately predict the total cost of data redistribution given the number of
tetrahedral elements that have to be moved among the processors.

Our load balancing procedure has five novel features: (i) a dual graph rep-
resentation of the initial computational mesh keeps the complexity and connectivity
constant during the course of an adaptive computation; (ii) a parallel mesh repar-
titioning algorithm avoids a potential serial bottleneck; (iii) a heuristic remapping
algorithm quickly assigns partitions to processors so that the redistribution cost
is miﬁimized; (iv) an efficient data movement scheme allows remapping and mesh
subdivision at a significantly lower cost than previously reported; and (v) accurate
metrics estimate and compare the computational gain and the redistribution cost of
having a balanced workload after each mesh adaption step. Results show that our
parallel balancing strategy for adaptive unstructured meshes will remain viable on

large numbers of processors as none of the individual modules will be a bottleneck.
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3.1 Dual Graph of Initial Mesh

Parallel implementation of CFD flow solvers usually require a partitioning
of the computational mesh, such that each tetrahedral element belongs to an unique
partition. Communication is required across faces that are shared by adjacent ele-
ments residing on different processors. Hence for the purposes of partitioning, we
consider the dual of the computational mesh.

Using the dual graph representation of the initial mesh for the purpose of

dynamic load balancing is one of the key features of this work. The tetrahedral
elements of this mesh are the vertices of the dual graph. An edge exists between two
dual graph vertices if the corresponding elements share a face. A graph partitioning
of the dual thus yields an assignment of tetrahedra to processors. There is a signif-
icant advantage of using the dual of the initial computational mesh to perform the
repartitioning and remapping at each load balancing step of PLUM. This is because
the complexity remains unchanged during the course of an adaptive computation.
FEach dual graph vertex has two weights associated with it. The compu-
tational weight, Weomp, indicates the workload for the corresponding element. The
remapping weight, Wremap, indicates the cost of moving the element from one pro-
cessor to another. The weight weomp i set to the number of leaf elements in the
refinement tree because only those elements that have no children participate in the
flow computation. The weight wyemap, however, is set to the total number of elements
in the refinement tree because all descendants of the root element must move with it
from one partition to another if so required. Every edge of the dual graph also has
a weight weomm that models the runtime interprocessor communication. The value
of Weomm 15 set to the number of faces in the computational mesh that corresponds
to the dual graph edge. The mesh connectivity, Wcomp; and Weomm determine how

dual graph vertices should be grouped to form partitions that minimize both the
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disparity in the partition weights and the runtime communication. The Wremap de-
termines how partitions should be assigned to processors such that the cost of data
redistribution is minimized.

New computational grids obtained by adaption are translated to the weights
Weomp aNd Wremap for every vertex and to the weight weomm for every edge in the
dual mesh. As a result, the repartitioning and load-balancing times depend only
on the initial problem size and the number of partitions, but not on the size of the
adapted mesh.

One minor disadvantage of using the initial dual grid is when the starting
computational mesh is either too large or too small. For extremely large initial
meshes, the partitioning time will be excessive. This problem can be circumvented by
agglomerating groups of elements into larger superelements. For very small meshes,
the quality of the partitions will usually be poor. One can then allow the initial
mesh to be adapted one or more times before forming the dual graph that is then

used for all future adaptions.

3.2 Preliminary Evaluation

Before embarking on an intensive load balancing phase, it is worthwhile esti-
mating if the impending mesh adaption is going to seriously imbalance the processor
workloads. The preliminary evaluation step achieves this goal by rapidly determin-
ing if the dual graph with a new set of wcomp should be repartitioned. If projecting
the new values on the current partitions indicates that they are adequately load bal-
anced, there is no need to repartition the mesh. In that case, the flow computation
continues uninterrupted on the current partitions. If, on the other hand, the loads
are unbalanced, the mesh is repartitioned.

A proper metric is required to measure the load imbalance. If Wpay is the

sum of the weomp On the most heavily-loaded processor, and Wy, is the average
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load across all processors, the average idle time for each processor is (Wmax — Wavg)-
This is an exact measure of the load imbalance. The mesh is repartitioned if the

imbalance factor Wyax/Wavg is unacceptable.

3.3 Parallel Mesh Repartitioning

If the preliminary evaluation step determines that the dual graph with a
new weight distribution is unbalanced; the mesh needs to be repartitioned. Note
that repartitioning is always performed on the initial dual graph with the weights of
the vertices and edges adjusted to reflect a mesh adaption step. A good partitjoner
should minimize the total execution time by balancing the computational loads and
reducing the interprocessor communication time. In addition, the repartitioning
phase must be performed very rapidly for our PLUM load balancing framework to
be viable. Serial partitioners are inherently inefficient since they do not scale in
either time or space with the number of processors. Additionally, a bottleneck is
created when all processors are required to send their portion of the grid to the host
responsible for performing the partitioning. The solution must then be scattered
back to all the processors before the load balancing can continue. A high quality
parallel partitioner is therefore necessary to alleviate these problems.

For the test cases in this chapter PMeTiS [41] was used as the reparti-
tioner. PMeTiS is a multilevel algorithm which has been shown to quickly produce
high quality partitions. It reduces the size of the graph by collapsing vertices and
edges using a heavy edge matching scheme, applies a greedy graph growing algorithm
for partitioning the coarsest graph, and then uncoarsens it back using a combina-
tion of boundary greedy and Kernighan-Lin refinement to construct a partitioning
for the original graph. A key feature of PMeTiS is the utilization of graph color-
ing to parallelize both the coarsening and the uncoarsening phases. An additional

benefit of the algorithm is the potential reduction in remapping cost since parallel
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MeTiS, unlike the serial version, can use the previous partition as the initial guess
for the repartitioning. Results indicate that this partitioner can be effectively used
inside PLUM; however, any other partitioning algorithm can also be used as long as it
quickly delivers partitions that are reasonably balanced and require minimal commu-
nication. Extensive analysis of several other repartitioning strategies are presented

in Chapter 4.

3.4 Similarity Matrix Construction

Once new partitions are obtained, they must be mapped to processors such
that the redistribution cost is minimized. In general, the number of new partitions
is an integer multiple F of the number of processors. Each processor is then assigned
F unique partitions. The rationale behind allowing multiple partitions per processor
is that performing data mapping at a finer granularity reduces the volume of data
movement at the expense of partitioning and processor reassignment times. However,
the simpler scheme of setting F' to unity suffices for most practical applications.

Quantitative effects of varying F for our test cases are shown in Section 3.8.

New Partitions

Old Processors

Figure 3.1. An example of a similarity matrix M for P = 4 and F = 2. Only the
non-zero entries are shown.

The first step toward processor reassignment is to compute a similarity
measure M that indicates how the remapping weights wremap Of the new partitions

are distributed over the processors. It is represented as a matrix where entry M1, j
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is the sum of the Wremap Of all the dual graph vertices in new partition j that al-
ready reside on processor . Since the partitioning algorithm is run in parallel, each
processor can simultaneously compute one row of the matrix, based on the map-
ping between its current subdomain and the new partitioning. This information is
then gathered by a single host processor that builds the complete similarity matrix,
computes the new partition-to-processor mapping, and scatters the solution back to
the processors. Note that these gather and scatter operations require a minuscule
amount of time since only one row of the matrix (Px F integers) needs to be com-
municated to the host processor. A similarity matrix for P = 4 and F' = 2 is shown

in Fig. 3.1. Only the non-zero entries are shown.

3.5 Processor Reassignment

The goal of the processor reassignment phase is to find a mapping between
partitions and processors such that the data redistribution cost is minimized. Various
cost functions are usually needed to solve this problem for different architectures.
We present three general metrics: TotalV and MaxV, and MaxSR which model the
remapping cost on most multiprocessor systems. TotalV minimizes the total volume
of data moved among all processors, MaxV minimizes the maximum flow of data to
or from any single processor, while MaxSR minimizes sum of the maximum flow of

data to and from any processor. A greedy heuristic algorithm is also presented.

3.5.1 TotalV metric

The TotalV metric assumes that by reducing network contention and the
total number of elements moved, the remapping time will be reduced. In general,
each processor cannot be assigned F unique partitions corresponding to their F

largest weights. To minimize TotalV, each processor ¢ must be assigned F partitions
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Ji_fs f =1,2,..., F, such that the objective function

P F
F= }: > M., (3.1)

=1 f=1

is maximized subject to the constraint
Jir £ Jks, foriFkorr#s;, ,k=1,2,...,P; rs=12,...,F

We can optimally solve this by mapping it to a network flow optimization
problem described as follows. Let G = (V, E) be an undirected graph. G is bipartite
if V can be partitioned into two sets A and B such that every edge has one vertex
in A and the other vertex in B. A matching is a subset of edges, no two of which
share a common vertex. A maximum-cardinality matching is one that contains as
many edges as possible. If G has a real-valued cost on each edge, we can consider
the problem of finding a maximum-cardinality matching whose total edge cost is
maximized. We refer to this as the maximally weighted bipartite graph (MWBG)
problem (also known as the assignment problem).

When F = 1, optimally solving the TotalV metric trivially reduces to
MWBG, where V consists of P processors and P partitions in each set. An edge
of weight M;; exists between vertex ¢ of the first set and vertex j of the second
set. If F > 1, the processor reassignment problem can be reduced to MWBG by
duplicating each processor and all of its incident edges F times. Each set of the
bipartite graph then has PxF vertices. After the optimal solution is obtained, the
solutions for all F copies of a processor are combined to form a one-to-F mapping
between the processors and the partitions. The optimal solution for the TotalV
metric and the corresponding processor assignment of an example similarity matrix
is shown in Fig. 3.2(a).

The fastest MWBG algorithm can compute a matching in O(|V|?log|V|+
[V||E]) time [27], or in O(|V|Y/?|E|log(JV|C)) time if all edge costs are integers of

absolute value at most C [28]. We have implemented the optimal algorithm with a
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runtime of O(|V|?). Since M is generally dense, |E| ~ |V |2, implying that we should

not see a dramatic performance gain from a faster implementation.

3.5.2 MaxV metric

The metric MaxV, unlike TotalV, considers data redistribution in terms of
solving a load imbalance problem, where it is more important to minimize the work-
load of the most heavily-weighted processor than-to minimize the sum of all the
loads. During the process of remapping, each processor must pack and unpack send
and receive buffers, incur remote-memory latency time, and perform the compu-
tational overhead of rebuilding internal and shared data structures. By minimizing
max(axmax(ElemsSent), Bxmax(ElemsRecd)), where o and f3 are machine-specific
parameters, MaxV attempts to reduce the total remapping time by minimizing the
execution time of the most heavily-loaded processor. We can solve this optimally
by considering the problem of finding a maximum-cardinality matching whose maxi-
mum edge cost is minimum. We refer to this as the bottleneck maximum cardinality
matching (BMCM) problem.

To find the BMCM of the graph G corresponding to the similarity matrix,
we first need to transform M into a new matrix M. Each entry M: ; Tepresents the
maximum cost of sending data to or receiving data from processor ¢ and partition 7

P P
M} = max((a 3 M,y # ), (BY Mojuz # 4)). (3.2)
y=1 z=1
Currently, our framework for the MaxV metric is restricted to F* = 1. We have im-
plemented the BMCM algorithm of Bhat [5] which combines a maximum cardinality
matching algorithm with a binary search, and runs in O(|V|'/}|E|log|V]). The
fastest known BMCM algorithm, proposed by Gabow and Tarjan [29], has a runtime
of O((|V|log [VI)!/?|E}).
The new processor assignment for the similarity matrix in Fig. 3.2 using

this approach with a = 8 = 1 is shown in Fig. 3.2(b). Notice that the total number
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Figure 3.2. Various cost metrics of a similarity matrix M for P = 4 and F = 1 using
(a) optimal MWBG algorithm, (b) optimal BMCM algorithm, (c) optimal DBMCM

algorithm, and (d) our heuristic algorithm.
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of elements moved in Fig. 3.2(b) is larger than the corresponding value in Fig. 3.2(a);

however, the maximum number of elements moved is smaller.

3.5.3 MaxSR metric

Our third metric, MaxSR, is similar to MaxV in the sense that the overhead
of the bottleneck processor is minimized during the remapping phase. MaxSR differs,
however, in that it minimizes the sum of the heaviest data flow from any processor
and to any processor, expressed as (axmax(ElemsSent) + #xmax(ElemsRecd)).
We refer to this as the double bottleneck maximum cardinality matching (DBMCM)
problem. The MaxSR formulation allows us to capture the computational overhead
of packing and unpacking data, when these two phases are separated by a barrier
synchronization. Additionally, the MaxSR metric may also approximate the many-to-
many communication pattern of our remapping phase. Since a processor can either
be sending or receiving data, the overhead of these two phases should be modeled
as a sum of costs.

We have developed an algorithm for computing the minimum MaxSR of the
graph G corresponding to our similarity matrix. We first transform M to a new
matrix M". Each entry M,’; contains a pair of values (Send, Receive) representing
the total cost of sending and receiving data, when processor 7 is mapped to partition
I P P

Ml = {S; = (@Y Miysy # 4), Rig = (B Majyz # i)} (3.3)
y=1 z=1
Currently, our algorithm for the MaxSR metric is restricted to F' = 1.

Let 01,02,...,04 be the distinct Send values appearing in M", sorted in
increasing order. Thus, 6; < 041 and k < P?%. Form the bipartite graph G; =
(V, E;), where V consists of processor vertices u = 1,2,..., P and partition vertices
v=1,2,...,P, and E; contains edge (u,v) if Sy, < o;; furthermore, edge (u,v) has

weight R, if it is in E;.
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For small values of i, graph G; may not have a perfect matching. Let imin

be the smallest index such that G has a perfect matching. Obviously, G; has a

perfect matching for all ¢ > ip,in. Solving the BMCM problem of G; gives a matching
that minimizes the maximum Receive edge weight. It gives a matching with MaxSR

value at most o;+ MaxV(G;). Define

MaxSR(z) = min< (o; + MaxV(Gj)). (3.4)

imin $J <1
It is easy to see that MaxSR(k) equals the correct value of MaxSR. Thus, our algorithm
computes MaxSR by solving £ BMCM problems on the graphs G; and computing the
minimum value MaxSR(k). However, we can prematurely terminate the algorithm
if there exists an ¢max such that oy, 41 > MaxSR(Zmax), since it is then guaranteed
that the MaxSR solution is MaxSR(%max)-

Our implementation has a runtime of O(|V|Y/2|E|?log |V|) since the BMCM
algorithm is called |E| times in the worst case; however, it can be decreased to
O(|E|?). The following is a brief sketch of this more efficient implementation.

Suppose we have constructed a matching M that solves the BMCM problem
of G; for i > tpnin. We solve the BMCM problem of G4, as follows. Initialize a
working graph G to be G;4; with all edges of weight greater than MaxV(G;) deleted.
Take the matching M on G, and delete all unmatched edges of weight MaxV(G;).
Choose an edge (u,v) of maximum weight in M. Remove edge (u,v) from M
and G, and search for an augmenting path from » to v in G. If no such path
exists, we know that MaxV(G;) =MaxV(Gi4+1). If an augmenting path is found, repeat
this procedure by choosing a new edge (u’,v') of maximum weight in the matching
and searching for an augmenting path. After some number of repetitions of this
procedure, the maximum weight of a matched edge will have decreased to the desired
value MaxV(Gi41). At this point our algorithm to solve the BMCM problem of G4,
will stop, since no augmenting path will be found.

This algorithm runs in total time O(|E|?). To see this, note that each
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search for an augmenting path uses time O(|E|). The total number of such searches
is O(|E|). This is because a successful search for an augmenting path for edge (u,v)
permanently eliminates this edge from all future graphs, so there are at most |E|
successful searches. Furthermore, there are at most |E| unsuccessful searches, one
for each value of <.

The new processof assignment for the similarity matrix in Fig. 3.2 using the
DBMCM algorithm with @ = 8 = 1 is shown in Fig. 3.2(c). Notice that the MaxSR
solution is minimized; however, the number of TotalV elements moved is larger than
the corresponding value in Fig. 3.2(a), and more MaxV elements are moved than
in Fig. 3.2(b). Also note that the optimal similarity matrix solution for MaxSR is

provably no more than twice that of MaxV.

3.5.4 Heuristic Algorithm

We have developed a heuristic greedy algorithm that gives a suboptimal
solution to the TotalV metric in O(|E]) steps. The pseudocode for our heuristic
algorithm is given in Fig. 3.3. Initially, all partitions are flagged as unassigned and
each processor has a counter set to F that indicates the remaining number of par-
titions it needs. The non-zero entries of the similarity matrix M are then sorted in
descending order. Starting from the largest entry, partitions are assigned to proces-
sors that have less than F' partitions until done. If necessary, the zero entries in M
are also used. Applying this heuristic algorithm to the similarity matrix in Fig. 3.2
generates the new processor assignment shown in Fig. 3.2(d). We show that a pro-
cessor assignment obtained using the heuristic algorithm can never result in a data
movement cost that is more than twice that of the optimal TotalV assignment. Ad-
ditionally, experimental results in Section 3.8 demonstrate that our heuristic quickly

finds high quality solutions for all three metrics.
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for (j=0; j<npart; j++) part_map[j] = unassigned;
for (i=0; i<nproc; i++) proc_unmap[i] = npart / nproc;
generate list L of entries in S in descending order using radix sort;
count = 0;
wvhile (count < npart) {
find next entry M[{i][j] in L such that
proc_unmap[il > 0 and part_map[j) = unassigned;
proc_unmap[i]--;
part_map[j] = assigned;
count++;
map partition j to processor i;

}
Figure 3.3. Pseudocode for our heuristic algorithm for solving the processor reas-
signment problem.

Theorem 1: The value of the objective function F using the heuristic
algorithm is always greater than half the optimal solution.

Proof: We prove by the method of induction. Let Mffj denote the entry in
the i-th row and j-th column of a kxk similarity matrix. Let Opt* and Heu* denote
the optimal and heuristic solutions, respectively, for the similarity matrix M*. When
k =1, 0pt! = Heu! since there is only one entry in M! and must be chosen by both
algorithms. Thus, 2 Heu! > Opt!.

Assume now that the thecrem is true for some n > 1; that is, 2Heu™ > Opt™.
We need to show that 2 Heu™*t! > Optnt!,

Without loss of generality, create M™*! from M™ by adding a new row and
column such that M,’:ill'nH > max (Ml",ﬂl, M,':j:ll,) for 1 < i < n. Therefore, by
definition of the heuristic algorithm, Heu"t! = Heu™ + M,':j_’lln 4+1- Since 2 Heu™ >
Opt", we get 2Heu™t! > Opt™ + QM:ill'n +1- There are now two cases that can occur
for the optimal solution.

Casel. M "_tll,n 41 is contained in the optimal solution.

n

This means Opt™t! = Opt" + M;‘_t]l'n +1- Thus, 2Heu™! > ppt™+! +M:_?_'11'n +1» Which
implies 2 Heu™t1 > opt™tl. O

Case 2. M1 |, is not contained in the optimal solution.
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Without loss of generality, assume that M::L;-ln and M:Ill’n are contained in the
optimal solution. This means Opt™*+! = opt™~! + ML, + MZH .. By definition
of M:Ill,n+l’ we get Opt™t! < 0pt"~! + 2 M:i’llvnﬂ. Since Opt™ > Opt™~!, we have
opt™t! < Opt" + 2 MIH ;. Therefore, 2 Heu®t! > opt™tl. O

Corollary: A processor assignment obtained using the heuristic algorithm
can never result in a data movement cost that is more than twice that of the optimal
assignment.

Proof: We assume that the data movement cost is proportional to the
number of elements that are moved and is given by 33" M;; — F. We need to show
that 3° 3 M, —Heu™ < 2(3° 3 M[; —0pt™); that is, .3 M, —20pt™ +Heu™ > 0.

Let Int* be the sum of the similarity matrix entries that are contained
in both Opt* and Heu*. Therefore, -5 M}; > Opt™ + Heu" — Int". This implies
Y3 MP; —20pt™ +Heu" > 2Heu" — Opt™ — Int™. By Theorem 1, 2(Heu" — Int") >
(Opt™ — Int™), since (Heu™ — Int™) and (Opt” — Int") are the heuristic and optimal

solutions for a similarity matrix M* C M™. O

Recall that TotalV does not consider the execution times of bottleneck
processors while MaxV and MaxSR ignore bandwidth contention. A quantitative com-
parison of all three metrics is presented in Section 3.8. In general, the objective
function may need to use a combination of metrics to effectively incorporate all

related costs.

3.6 Cost Calculation
Once the reassignment problem is solved, a model is needed to quickly pre-

dict the expected redistribution cost for a given architecture. Accurately estimating
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this time is very difficult due to the large number and complexity of the costs in-
volved in the remapping procedure. The computational overhead includes rebuilding
internal data structures and updating shared boundary information. Predicting the
latter cost is particularly challenging since it is a function of the old and new parti-
tion boundaries. The communication overhead is architecture-dependent and can be
difficult to predict especially for the many-to-many collective communication pattern
used by the remapper.

Our redistribution algorithm consists of three major steps: first, the data
objects moving out of a partition are stripped out and placed in a buffer; next,
a collective communication appropriately distributes the data to its destination;
and finally, the received data is integrated into each partition and the boundary
information is consistently updated. Performing the remapping in this bulk fashion,
as opposed to sending individual small messages, has several advantages including the
amortization of message start up costs and good cache performance. Additionally,
the total time can be modeled by examining each of the three steps individually since
the two computational phases are separated by the implicit barrier synchronization of
the collective communication. The computation time can therefore be approximated
as:

a x max(ElemsSent) + 3 x max(ElemsRecd) + 4, (3.5)

where a and S represent the time necessary to strip out and insert an element
respectively, and ¢ is the additional cost of processing boundary information. The
maximum values of ElemsSent and ElemsRecd can be quickly derived from the solved
similarity matrix. Since the value of § is difficult to predict exactly and constitutes
a relatively small part of the computation, we assume that it is a small constant. To
simplify our model even further, we assume that o = (3.

A significant amount of work has been done to model communication over-

head including LogP [19], LogGP [1], and BSP [66]. All three models make the
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following assumptions which hold true for most current architectures: a receiving
processor may access a message or parts of it only after the entire message has
arrived; and, at any given time a processor can either be sending or receiving a
single message (also known as a single port model). Note that these models do
not account for network contention (hotspots), since they are extremely difficult to
capture. Finally, BSP and LogGP arrive at similar cost metrics for bulk collective
communication. Our redistribution procedure closely follows the superstep model of
BSP.

All reported results in this chapter were performed on the wide-node IBM
SP2 located at NASA Ames Research Center. Portability onto the Origin2000 is
addressed in Chapter 4. The SP2 consists of RS6000/590 processors, which are
connected through a high performance switch, call the Vulcan chip. Each chip con-
nects up to eight processors, and eight Vulcan chips comprise a switching board.
An advantage of this interconnection mechanism is that all nodes can be considered
equidistant from one another. This allows us to predict the communication over head
without the need to model multiple hops for individual messages. We approximate

our communication cost for the SP2 as:
g X max(ElemsSent) + g X max(ElemsRecd) + [, (3.6)

where g is a machine-specific cost of moving a single element and [ is the time for
barrier synchronization.
The total expected time for the redistribution procedure can therefore be

expressed as:

v X MaxSR + O, (3.7)

where MaxSR = max(ElemsSent) + max(ElemsRecd), ¥ = o+ g, and O = é + L.
Eqn. 3.7 demonstrates precisely why we need to model the MaxSR metric when per-

forming processor reassignment. By minimizing MaxSR we can guarantee a reduction
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in the computational overhead of our remapping algorithm. Since the computational
workload is architecture independent, we are effectively solving two load balanc-
ing problems partitioned by a collective communication. Additionally, by reducing
MaxSR we can achieve a savings in communication overhead on many bandwidth rich
systems. Most modern architectures are restricted to a single port model, where
each processor can either be sending or receiving a single message. The many-to-
many communication pattern of remapping can therefore be approximated as a load
balance problem, represented by MaxSR.

In order to compute the slope and intercept of the linear function in Eqn. 3.7,
several data points need to be generated for various redistribution patterns and their
corresponding run times. A simple least squares fit can then be used to approximate
v and O. This procedure needs to be performed only once for each architecture,
and the values of v and O can then be used in actual computations to estimate the
redistribution cost.

The computational gain due to repartitioning is proportional to the decrease
in the load imbalance achieved by running the adapted mesh on the new partitions
rather than on the old partitions. It can be expressed as ﬂzerNadapt(W,‘,’,]fx — Wprew),
where Tjier is the time required to run one solver iteration on one element of the
original mesh, Nagapt is the number of solver iterations between mesh adaptions,
and Weld and WBSY are the sum of the weomp on the most heavily-loaded processor
for the old and new partitioning, respectively. The new partitioning and processor
reassignment are accepted if the computational gain is larger than the redistribution

cost. The numerical simulation is then interrupted to properly redistribute all the

data.
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3.7 Data Remapping

The remapping phase is responsible for physically moving data when it
is reassigned to a different processor. It is generally the most expensive phase of
any load balancing strategy. This data movement time can be significantly reduced
by considering two distinct phases of mesh refinement: marking and subdivision.
During the marking phase, edges are chosen for bisection either based on an error
indicator or due to the propagation needed for valid mesh connectivity [12]. This
is essentially a bookkeeping step during which the grid remains unchanged. The
subdivision phase is the process of actually bisecting edges and creating new vertices
and elements based on the generated edge-marking patterns. During this phase, the
data volume corresponding to the grid grows since new mesh objects are created.
An extensive analysis of the mesh adaption procedure is presented in Chapter 2.

A key observation is that data remapping for a refinement step should be
performed after the marking phase but before the actual subdivision. Because the
refinement patterns are determined during the marking phase, the weights of the dual
graph can be adjusted as though subdivision has already taken place. Based on the
updated dual graph, the load balancer proceeds in generating a new partitioning,
computing the new processor assignments, and performing the remapping on the
original unrefined grid. Since a smaller volume of data is moved using this technique,
a potentially significant cost savings is achieved. The newly redistributed mesh is
then subdivided based on the marking patterns. This is the strategy that is used in
PLUM (cf. Fig. 1.1).

As described in Section 2.4, an additional performance benefit is obtained
as a side effect of this strategy. Since the original mesh is redistributed so that mesh
refinement creates approximately the same number of elements in each partition, the
subdivision phase performs in a more load balanced fashion. This reduces the total

mesh refinement time. The savings should thus be incorporated as an additional term
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in the computational gain expression described in the previous subsection. The new
partitioning and mapping are accepted if the computational gain is larger than the

redistribution cost:

W/ new
T Nactupt (Wi~ W3SE) + Treime (55 — 1) > 7 X WaxsR +0,  (38)
max

where Tiefine is the time required to perform the subdivision phase based on the

edge-marking patterns.

3.8 Experimental results

PLUM was originally implemented on the IBM SP2 distributed-memory
multiprocessor located at NASA Ames Research Center. The code is written in
C++, with the parallel activities in MPI for portability. Note that no SP2-specific
optimizations were used to obtain the performance results reported in this chapter. A

portability analysis of PLUM on the SGI/Cray Origin2000 is presented in Chapter 4.

Table 3.1: Grid sizes for the three different refinement strategies

| | Vertices | Elements | Edges |

Initial Mesh | 13,967 60,968 78,343
REAL_1 17,880 82,489 | 104,209
REAL_2 39,332 201,780 | 247,115
REAL_3 61,161 321,841 | 391,233

The computational mesh used for the experiments in this chapter is the
one used to simulate the acoustics wind-tunnel test of Purcell [54]. In the first set
of experiments, only one level of adaption is performed with varying fractions of the
mesh in Fig. 2.7 being targeted for refinement. These cases, denoted as REAL_1R,
REAL_2R, and REAL_3R, were used during the parallel mesh adaption analysis of
Sec. 2.4. Recall that for these strategies, edges are targeted for subdivision based
on an error indicator [52] calculated directly from the flow solution. For clarity,
Table 3.1 lists the grid sizes for this single level of refinement for each of the three

cases. Note that the same information can be derived from Table 2.1
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o Real_IR ---- Remap after refinement
o Real_2R — Remap before refinement

Refinement speedup

0 8 16 24 32 40 43 56 64
Number of processors

Figure 3.4. Speedup of the 3D_TAG parallel mesh adaption code when data is
remapped either after or before mesh refinement.

Figure 3.4 illustrates the parallel speedup curves for each of the three edge-
marking strategies, previously presented in Tables 2.3 and 2.4. Two sets of results
are presented: one when data remapping is performed after mesh refinement, and
the other when remapping is performed before refinement. An extensive analysis of
this data is presented in Section 2.4.

Figure 3.5 shows the remapping time for each of the three cases. As in
Fig. 3.4, results are presented when the data remapping is done both after and before
the actual mesh subdivision. A significant reduction in remapping time is observed
when the adapted mesh is load balanced by performing data movement prior to actual
subdivision. This is because the mesh grows in size only after the data has been
redistributed. The biggest improvement is seen for REAL_3R when the remapping
time is reduced to less than a third from 3.71 secs to 1.03 secs on 64 processors.
These results in Figs. 3.4 and 3.5 demonstrate that our methodology within PLUM
is effective in significantly reducing the data remapping time and improving the
parallel performance of mesh refinement.

Figure 3.6 compares the execution times and the amount of data movement

for the REAL_2R strategy when using the optimal and heuristic MWBG processor
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Figure 3.5. Remapping times within PLUM when data is remapped either after or
before mesh refinement.

assignment algorithms. Both algorithms use the TotalV metric. Four pairs of curves
are shown in each plot for F = 1, 2, 4, and 8. The optimal method always re-
quires almost two orders of magnitude more time than our heuristic method. The
execution times also increase significantly as F' is increased because the size of the
similarity matrix grows with F. However, the volume of data movement decreases
with increasing F'. This confirms our earlier claim that data movement can be re-
duced by mapping at a finer granularity. The relative reduction in data movement,
however, is not very significant for our test cases. The results in Fig. 3.6 illustrate
that our heuristic mapper is almost as good as the optimal algorithm while requir-
ing significantly less time. Similar results were obtained for the other edge-marking
strategies.

Table 3.2 presents a comparison of our five different processor reassignment
strategies in terms of processor reassignment time and the amount of data movement.
Results are shown for the REAL_2R strategy on the SP2 with F = 1. The first row
shows the default assignment generated by the PMeTiS [41] partitioner, while the
remaining strategies refer to our reassignment algorithms described in Section 3.5.

The PMeTiS case does not require any explicit processor reassignment since
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Figure 3.6. Comparison of the optimal and heuristic MWBG remappers in terms
of the execution time (top) and the volume of data movement (bottom) for the
REAL_2R strategy.
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Table 3.2. Comparison of five processor reassignment algorithms for the Real 2R case
on the SP2 with F' = 1.

P=38§ P =16
TotalV | MaxV | MaxSR | Reass. | TotalV | MaxV | MaxSR | Reass.
Algthm. | Metric | Metric | Metric| Time | Metric | Metric | Metric| Time

PMeTiS 42680 9597 13359| 0.0000| 53242| 8012| 11222| 0.0000
Heuristic 30071 8169 11167| 0.0002| 365201 7131| 9294| 0.0005
MWBG 30071 8169| 11162 0.0013| 35096 7131} 9230{ 0.0045
BMCM 35506 8169 11512 0.0019| 50488 7131| 9377| 0.0070
DBMCM 33862 8250| 11010 0.0167| 53012 7134| 9123 0.0614

P =32 P=64
TotalV | MaxV | MaxSR | Reass. | TotalV | MaxV | MaxSR | Reass.
Algthm. || Metric | Metric | Metric| Time | Metric| Metric | Metric{ Time

PMeTiS 58297 5067 | 7467 0.0000| 67439} 2667 4452 0.0000
Heuristic 35032| 4410( 5809 0.0017| 38283 2261| 3123| 0.0088
MWBG 34738 4410| 5822 0.0177| 38059 2261| 3142| 0.0650
BMCM 49611 4410 5944| 0.0323| 52837| 2261| 3282 0.1327
DBMCM 50270 4414| 5733| 0.0921] 54896| 2261 3121 1.2515

we choose the default partition-to-processor mapping given by the partitioner. How-
ever, it shows extremely poor performance for all three metrics. This is expected
since PMeTiS is a global partitioner that does not attempt to minimize the remap-
ping overhead. An extensive comparison of PMeTiS with other global and diffusive
partitioners is given in Section 4.2.1

The execution times of the other four algorithms increase with the num-
ber of processors because the growth in the size of similarity matrix; however, the
heuristic time for 64 processors is still very small and acceptable. The total volume
of data movement is obviously smallest for the MWBG algorithm since it optimally
solves for the TotalV metric. In the optimal BMCM method, the maximum of the
number of elements sent or received is explicitly minimized, but almost all the other

algorithmic solutions give the identical result. There were some differences in the
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maximum number of elements received among the three methods; however, the max-
imum number of elements sent was consistently larger and these are consequently
reported. In our helicoptor rotor experiment, small regions of the domain incur a
dramatic increase in grid points between refinement levels. These newly refined re-
gions must shift a large number of elements onto other processors in order to achieve
a balanced load distribution. Therefore, a similar MaxV solution should be obtained
by any reasonable reassignment algorithm.

The DBMCM algorithm optimally reduces MaxSR metric, but achieves no
more than a 5% improvement over the other algorithms. Nonetheless, since we
believe that the MaxSR metric can closely approximate the remapping cost on many
architecture, computing its optimal solution can provide useful information. Notice
that the minimum TotalV increases slightly as P grows from 8 to 64, while the
MaxSR is dramatically reduced by over 70%. This trend continues as the number of
processors increase. These results indicates that the our load balancing algorithm
will remain viable on a large number of processor, since the per processor work load
decreases as P increases.

Finally, observe that the heuristic algorithm does an excellent job in min-
imizing all three cost metrics, in a trivial amount of time. Although theoretical
bounds have only been established for the TotalV metric, empirical evidence in-
dicates that the heuristic algorithm closely approximates both MaxV and MaxSR. It
was therefore used to perform the processor reassignment for all the experiments
reported in this paper.

Figure 3.7 shows how the execution time is spent during the refinement and
the subsequent load balancing phases for the three different cases. The reassignment
times are not shown since they are negligible compared to the other times and are
very similar to those listed in Table 3.2 for all the three cases. The repartitioning

curves, using PMeTiS [41], are almost identical for the three cases because the time to
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repartition mostly depends on the initial problem size. Notice that the repartitioning
times are almost independent of the number of processors; however, for our test
mesh, there is a minimum when the number of processors is about 16. This is not
unexpected. When there are too few processors, repartitioning takes more time
because each processor has a bigger share of the total work. When there are too
many processors, an increase in the communication cost slows down the repartitioner.
For a larger initial mesh, the minimum partitioning time will occur for a higher
number of processors. For REAL_2R, the PMeTiS partitioner required 0.58 secs to
generate 64 partitions on 64 processors. The remapping times gradually decrease
as the number of processors is increased. This is because even though the total
volume of data movement increases with the number of processors, there are actually
more processors to share the work. Notice that the refinement, repartitioning, and
remapping times are generally comparable when using more than 32 processors. For
example, the refinement and remapping phases required 0.55 secs and 0.89 secs,
respectively, on 64 processors for REAL_2R.

We also investigate the maximum and the actual impact of load balancing
using PLUM on flow solver execution times. Suppose that P processors are used to
solve a problem on a tetrahedral mesh consisting of N elements. In a load balanced
configuration, each processor has N/P elements assigned to it. The computational
mesh is then refined to generate a total of GN elements, 1 < G < 8 for our refine-
ment procedure. If the workload were balanced, each processor wopld have GN/P
elements. But in the worst case, all the elements on a subset of processors are isotrop-
ically refined 1-to-8, while elements on the remaining processors remain unchanged.
The most heavily-loaded processor would then have the smaller of 8N/P and GN—
(P-1)N/P elements. Thus, the maximum improvement due to load balancing for a

single refinement step would be:

min (8, P(G—-1)+1) (3.9)

Q=
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Figure 3.7. Anatomy of execution times for the REAL_1R, REAL.2R, and REAL_3R

refinement strategies.
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The maximum impact of load balancing for the three strategies are shown
in the top half of Fig. 3.8. The mesh growth factor G is 1.35 for the REAL_1R case,
giving a maximum improvement of 5.91 with load balancing when P > 20. The value
of G is 3.31 and 5.28 for REAL_2R and REAL_3R, so the maximum improvements
are 2.42 (for P > 4) and 1.52 (for P > 2), respectively. There is obviously no im-
provement with load balancing if G = 1 or G = 8. Notice that maximum imbalance
is attained faster as G increases; however, the magnitude of the maximum imbalance
gradually decreases. The actual impact of load balancing is shown in the bottom
half of Fig. 3.8. The three curves demonstrate the same basic nature as those for
maximum imbalance. The improvement due to load balancing on 64 processors is a
factor of 3.46, 2.03, and 1.52, for REAL_1R, REAL_2R, and REAL_3R, respectively.
The impact of load balancing for these cases is somewhat less significant than the
maximum possible since they model actual solution-based adaptions that do not nec-
essarily cause worst case scenarios. Note, however, that the maximum improvement
is already attained for REAL_3R. The REAL_1R and REAL_2R strategies would also
attain their respective maxima if more processors were used. It is important to real-
ize that the results shown in Fig. 3.8 are for a single refinement step. With repeated

refinement, the gains realized with load balancing may be even more significant.

Table 3.3. Progression of Grid Size through a Sequence of Three Levels of Adaption

] | Vertices | Elements l Edges I Bdy Faces I

Initial Mesh | 13,967 60,968 78,343 6,818
Level 1 35,219 179,355 | 220,077 11,008
Level 2 72,123 389,947 | 469,607 15,076
Level 3 137,474 765,855 | 913,412 20,168

In the second set of experiments, a total of three levels of adaption are
performed in sequence on the mesh shown in Fig. 2.7. Table 3.3 shows the size of

the computational mesh after each adaption step. Notice that the final mesh is more
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than an order of magnitude larger than the initial mesh. A close-up of the final mesh
and pressure contours in the helicopter rotor plane are shown in Fig. 3.9. The mesh
has been refined to adequately resolve the leading edge compression and capture

both the surface shock and the resulting acoustic wave that propagates to the far

7

field.

Figure 3.9. Final adapted mesh and computed pressure contours in the plane of the
helicopter rotor.

Figure 3.10 shows how the execution time is spent during the adaption
and the subsequent load balancing phases for the three levels. The reassignment
times are not shown since they are several orders of magnitude smaller than the
other times. The repartitioning curves, using PMeTiS [41], are almost identical to
those shown in Fig. 3.7. Slight perturbations in the repartitioning times are due to
different weight distributions of the dual graph. The mesh adaption times increase
with the size of the mesh; however, they consistently show an efficiency of about
85% on 64 processors for all three levels. In fact, the efficiency increases with the
mesh size because of a larger computation-to-communication ratio. The remapping
time increases from one adaption level to the next because of the growth in the mesh

size. More importantly, the remapping times always dominate and are generally
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about four times the adaption time on 64 processors. This is not unexpected since
remapping is considered the bottleneck in dynamic load balancing problems. It is
exactly for this reason that the remapping cost needs to be predicted accurately to
be certain that the data redistribution cost will be more than compensated by the
computational gain.

The third set of experiments are performed to compute the slope v and
the intercept O of our SP2 redistribution cost model derived in Eqn. 3.7. Empir-
ical data is gathered by running various redistribution patterns. Data points are
generated by permuting all possible combinations of the following four parameters:
number of processors P (8,16,32,64), mesh growth factor G (1.4,3.3,5.3), remapping
order (before refinement, after refinement), and similarity matrix solution (default,
heuristic). This produces 48 redistribution times which are then plotted against two
metrics, TotalV and MaxSR, in Fig. 3.11. Results demonstrafe that there is little
obvious correlation between the total number of elements moved (TotalV metric)
and the expected run time for the remapping procedure. On the other hand, there is
a clear linear correlation between the maximum number of elements moved (MaxSR
metric) and the actual redistribution time. There are some perturbations in the
plots resulting from factors such as network hotspots and shared data irregularities;
but the overall results indicate that our redistribution model successfully estimates
the data remapping time. This important result indicates that on the SP2 reducing
the bottleneck, rather than the aggregate, overhead guarantees a reduction in the

redistribution time.
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CHAPTER 4
PORTABILITY AND REPARTITIONING ANALYSIS

In this chapter, several experimental results verify the effectiveness of PLUM
on sequences dynamically adapted.unstructured grids. We examine portability by
comparing results between the distributed-memory system of the IBM SP2, and
the Scalable Shared-memory MultiProcessing (S2MP) architecture of the SGI/Cray
Origin2000. Additionally, we evaluate the performance of five state-of-the-art parti-
tioning algorithms that can be used within PLUM. Results indicate that for certain
classes of unsteady adaption, globally repartitioning the computational mesh pro-
duces higher quality results than diffusive repartitioning schemes. We also demon-
strate that a coarse starting mesh produces high quality load balancing, at a fraction
of the cost required for a fine initial mesh. Finally, we show that the data redistri-
bution overhead can be significantly reduced by applying our heuristic processor
reassignment algorithm to the default partition-to-processor mapping given by par-

titioners.

4.1 Helicopter rotor test case

We present a portability analysis by comparing the SP2 results from sec-
tion 3.8 with Origin2000 performance. The tetrahedral mesh described in Fig. 2.7 is
targeted for one level of refinement, based on the three different marking strategies
REAL_IR, REAL_2R, and REAL_3R (cf. Table 3.1).

All experiments were performed on a wide-node IBM SP2 and a SGI/Cray
Origin2000. Note that no architecture-specific optimizations were used to obtain the

performance results reported in this chapter. The SP2 is located in the Numerical
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Aerospace Simulation division at NASA Ames Research Center. An overview of its
architecture was presented in Section 3.6.

The Origin2000 used in these experiments is a 32-processor R10000 system,
located at NCSA, University of Illinois. The Origin2000 is the first commercially-
available 64-bit cache-coherent nonuniform memory access (CC-NUMA) system. A
small high performance switch connects two CPUs, memory, and I/0. This module,
called a node, is then connected to other nodes in a hypercube fashion. An advantage
of this interconnection system is that additional nodes and switches can be added
to create larger systems that scale with the number of processors. Unfortunately,
this configuration causes an increase in complexity when predicting communication
overhead, since an accurate cost model must consider the number of module hops,

if any, between communicating processors.

4.1.1 PLUM on the Origin2000

Figure 4.1 illustrates the parallel speedup for each of the three edge-marking
strategies on the Origin2000. Similar to the SP2 experiment (cf. Fig. 3.4), two sets of
results are presented: one when data remapping is performed after mesh refinement,
and the other when remapping is performed before refinement. Speedup numbers on
the Origin2000 are almost identical to those on the SP2. The Real 3R case shows the
best speedup performance because it is the most computation intensive. Remapping
the data before refinement has the largest relative effect for Real_1R, because it has
the smallest refinement region and load balancing the refined mesh before actual
subdivision returns the biggest benefit. The results are the best for Real 3R with
data remapping before refinement, showing an efficiency of more than 87% on 32
processors of both the SP2 and the Origin2000. Extensive performance analysis of
the parallel mesh adaption code on the SP2 are presented in Section 2.4.

To compare the performance on the SP2 and the Origin2000 more critically,
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Figure 4.1. Speedup of 3D_TAG the Origin2000 when data is remapped either after
or before mesh refinement.

one needs to look at the actual mesh adaption times rather than the speedup values.
These results are presented in Table 4.1 for the case when data is remapped before
the mesh refinement phase. Notice that the Origin2000 is consistently more than
twice as fast as the SP2. One reason is the faster clock speed of the Origin2000.
Another reason is that the mesh adaption code does not use the floating-point units
on the SP2, thereby adversely affecting its overall performance.

Figure 4.2 shows the remapping time for each of the three cases on the
Origin2000. As in the SP2 experiment (cf. Fig. 3.5), results are presented both when
the data remapping is done after and before the mesh subdivision. Once again,
a significant reduction in remapping time is observed when the adapted mesh is
load balanced by performing data movement prior to refinement. This is because a
smaller volume of data is moved, since mesh refinement occurs after redistribution.
Additionally, the remapping times decrease as the number of processors is increased.
This is consistent with SP2 results. As more processors share the work, each one
needs to process fewer elements. The remapping times when data is moved before

mesh refinement are reproduced for both systems in Table 4.2.
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Table 4.1. Execution time of 3D_TAG on the SP2 and the Origin2000 when data is
remapped before mesh refinement

Real_1R Real 2R Real 3R
SP2 | 02000 | SP2 | 02000 | SP2_| 02000
5.902 | 2.507 | 23.780 | 10.468 | 41.702 | 18.307
3.312 | 1.4271{12.060 | 5.261 | 21.593 | 9.422
1.981 0.839 6.734 | 2.880 | 10.977 | 4.736
1.372 | 0.578 3.434 1.470 5.682 | 2.492
16 [ 0.708 | 0.321 | 1.846 | 0.794 | 2.903 | 1.296
32 10.425| 0.193 1.061 0.458 1.490 | 0.651
64 | 0.247 0.550 0.794

ool us|ro| =[] ™0

Perhaps the most remarkable feature of these results is the dramatic re-
duction in remapping times when using all 32 processors on the Origin2000. This is
probably because network contention with other jobs is essentially removed when us-
ing the entire machine. One may see similar behavior on an SP2 if all the processors
in a system configuration are used.

Notice that when using up to 16 processors, the remapping times on the
SP2 and the Origin2000 are comparable. Recall that the remapping phase within
PLUM consists of both communication (to physically move data around) and com-
putation (to rebuild the internal and shared data structures on each processor). We
cannot report these times separately as that would require introducing several barrier
synchronizations. However, since the results in Table 4.1 indicate that computation
is faster on the Origin2000, it is reasonable to infer that bulk communication is
faster on the SP2. Additional experimentation is required to verify these claims. In
any case, the results in Figs. 4.1 and 4.2 demonstrate that our methodology within
PLUM is effective in significantly reducing the data remapping time and improving
the parallel performance of mesh refinement.

Figure 4.3 shows how the execution time is spent during the refinement and

the subsequent load balancing phases for the three different cases on the Origin2000.
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Figure 4.2. Remapping time within PLUM on the the Origin2000 when data is
redistributed either after or before mesh refinement.

As in the SP2 results of Figure 3.7, the processor reassignment times are not shown
since they are negligible compared to the other times. Note that the Origin2000
shows a qualitative behavior similar to the SP2. For all three subdivision strategies,
the major components of PLUM require approximately the same amount of time
when using 32 processors. These results show that PLUM can be successfully ported

to different platforms without any code modifications.

4.1.2 The redistribution cost model on the Origin2000

It is important to note from the results in Fig. 4.3 and Fig. 3.7 that the
refinement, repartitioning, and remapping times are generally comparable for the test
mesh when using a large number of processors ( P > 32). However, the remapping
time will increase significantly when the mesh grows in size due to adaption. Thus,
remapping is considered the bottleneck within the PLUM system. We therefore need
a cost model which compares the predicted redistribution cost versus the expected
computation gain of a balanced work load.

In the next set of experiments we attempt to map the SP2 redistribution

cost model (cf. Sec 3.6) onto the Origin2000. Experimental data is gathered by
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Table 4.2. Remapping time within PLUM on the SP2 and the Origin2000 when data
is redistributed before mesh refinement

Real_1R Real 2R Real_3R

P | SP2 | 02000 | SP2 | 02000 | SP2 ] 02000
21 2.601 3.259 | 5.273 | 4.940 ) 3.679 | 3.675
412813 | 2.679 | 3.440 | 3.005 | 3.003 | 2.786
812982 | 2876 |3.321 | 29631 3.351 | 2.786
16 | 1.821 1.392 | 2.173 | 2.346 | 2.049 | 2.353
32 (1012 0377 1.338| 0.491 | 1.260 | 0.435
64 | 0.709 0.890 1.031

running various redistribution patterns in order to compute the slope y and the in-
tercept O of Eqn. 3.7. The remapping times are then plotted against two metrics,
TotalV and MaxSR, in Fig. 4.4. Recall Fig. 3.11 which demonstrated that our SP2
redistribution cost model successfully estimates the data remapping time. Addition-
ally, we showed that reducing the bottleneck overhead on the SP2, results in a lower
remapping overhead.

The situation is quite different on the Origin2000. Remapping times were
extremely unpredictable for P < 32; hence, they are not shown in Fig. 4.4. Ob-
serve that, for P = 32, the MaxSR metric is not significantly better than TotalV.
Furthermore, the MaxSR metric is also not as good as on the SP2. These results
indicate that network contention and a complex architecture (multiple hops between
processors) are probably major factors. Additional experimentation is required on

the Origin2000 to develop a more reliable remapping cost model.

4.2 Unsteady simulation test case

The final set of experiments is performed to evaluate the efficacy of PLUM
in an unsteady environment where the adapted region is strongly time-dependent.
To achieve this goal, a simulated shock wave is propagated through the initial mesh

shown at the top of Fig. 4.5. The test case is generated by refining all elements within
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a cylindrical volume moving left to right across the domain with constant velocity,
while coarsening previously-refined elements in its wake. The performance of PLUM
is then measured at nine successive adaption levels. Note that because these results
are derived directly from the dual graph, mesh adaption times are not reported, and

remapping overheads are computed using our redistribution cost model.

Figure 4.5. Initial and adapted meshes (after levels 1 and 5) for the simulated
unsteady experiment.

Figure 4.6 shows the progression of grid sizes for the nine levels of adaption
in the unsteady simulation. Both coarse and fine meshes, called Sequence_1 and
Sequence_2 respectively, are used in the experiment to investigate the relationship
between load balancing performance and dual graph size. The coarse initial mesh,
shown in Fig. 4.5, contains 50,000 tetrahedral elements. The mesh after the first and
fifth adaptions for Sequence_l are also shown in Fig. 4.5. The initial fine mesh is
eight times the size of this coarse mesh. Note that even though the size of the meshes
remain fairly constant after four levels of adaption, the refinement region continues
to move steadily across the domain. The growth in size due to refinement is almost

exactly compensated by mesh coarsening. A third scenario, called Sequence_3, was
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Figure 4.6. Progression of grid sizes through nine levels of adaption for the unsteady
simulation.

also tested on the coarse initial mesh. This case was generated by reducing the
velocity of the cylindrical volume moving across the domain. Notice that the mesh
then continues to grow in size throughout the course of adaption. The final meshes
after nine adaption levels contain more than 1.8, 12.5, and 6.3 million elements for

Sequence_1, Sequence_2, and Sequence_3, respectively.

4.2.1 Comparison of partitioners

Recall that a good partitioning scheme is a critical component of our frame-
work. Since PLUM can use any general partitioner, we investigate the relative perfor-
mance of five parallel, state-of-the-art algorithms: PMeTiS, UAMeTiS, DAMeTiS,
Jostle-MD, and Jostle-MS.

Table 4.3 presents the partitioning times for Sequence.1 using these five dif-
ferent partitioners briefly described in Section 1.2.4. PMeTiS is the parallel multilevel
k-way partitioning scheme of Karypis and Kumar [41], UAMeTiS and DAMeTiS are
multilevel undirected and directed repartitioning algorithms of Schloegel, Karypis,
and Kumar [62], and Jostle-MS and Jostle-MD are multilevel-static and multilevel-

dynamic configurations of the Jostle partitioner of Walshaw, Cross, and Everett [72].
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Average results! show that UAMeTiS is the fastest among all five partitioners, while
Jostle-MS is the slowest. PMeTiS is about 40% slower than UAMeTiS, but almost

six times faster than Jostle-MS.

Table 4.3. Partitioning time on the SP2 for P=64 using a variety of partitioners for
Sequence_1

[[L T PMeTiS | UAMeTiS | DAMeTIS | Jostle-MS | Jostle-MD |

1] 052 0.34 0.42 2.20 2.20

2 [ 063 0.40 0.51 2.93 2.97

3] 068 0.55 0.68 4.28 4.36

41 089 0.66 0.67 5.52 5.38

5] 1.00 0.83 0.82 7.47 5.57

6 [ 107 0.61 0.80 6.01 5.60

7] 102 0.58 0.74 6.16 6.66

8 [ 089 0.65 0.96 4.92 6.13

9 [ 102 0.89 1.05 5.47 5.41
[A] o8 | o061 | o074 | 500 | 492 |

But partitioning time alone is not sufficient to rate the performance of a
mesh partitioner; one needs to investigate the quality of load balancing as well. We
define load balancing quality in two ways: the computational load imbalance factor?
and the percentage of cut edges. These values are presented for all five partitioners
both before and after they are invoked for Sequence_1 in Tables 4.4 and 4.5. PMeTiS
does an excellent job of consistently reducing the load imbalance factor to within 6%
of ideal (cf. Table 4.4). The Jostle partitioners are only slightly worse than PMeTiS,
and turn in acceptable performances. UAMeTiS and DAMeTiS, on the other hand,
show load imbalance factors larger than two. We do not know why this happens;
however, a poor load imbalance factor after repartitioning at any given adaption
level is one reason for a higher load imbalance factor before repartitioning at the

next adaption level.

!The last row in Tables 4.3-4.10 is marked with an A. It represents the average results over all
nine levels of adaption.

2The load imbalance factor is the ratio of the sum of the wcomp on the most heavily-loaded
processor to the average load across all processors.
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Table 4.4. Load imbalance factor before and after mesh partitioning for P=64 using
a variety of partitioners for Sequence_1

PMeTiS UAMeTiS | DAMeTiS | Jostle-MS | Jostle-MD
Bef ] Aft | Bef ] Aft | Bef l Aft Bef] Aft | Bef | Aft

L

1[358[1.03]3.58]|232]3.58]246/|3.58|1.02]3.58 ]| 1.02
2 1217[1.044.63]2.94[4.97 270|221 |1.04 218} 1.05
31246 [1.11 595238 |5.34 263|245 |1.18]2.47 | 1.06
4 16.42(1.08]9.99|233|13.7]225]6.35|1.30]6.29 | 1.39
5775104138219 (114|207 |7.64|1.14]| 759 1.14
6
7
8
9
A

784 11.04 [11.5(206]125]1.91|7.90]1.09]|7.92|1.46
7.96 | 1.07|11.1 {194 |11.2 [ 1.95|8.00 | 1.17 | 7.95 | 1.17
8.16 | 1.09 | 10.6 | 1.72 [ 9.96 | 1.60 | 7.94 | 1.14 | 7.93 | 1.28
8.011{1.06 999157 9.10|1.30 | 8.00 | 1.12 | 7.70 | 1.28

[6.04 [ 1.06 [ 9.02 [ 2.16 [ 9.09 [ 2.10 [ 6.01 [ 1.13 | 5.96 | 1.21 |

I

A comparison of the partitioners in terms of the percentage of cut edges
leads to similar conclusions (cf. Table 4.5). PMeTiS, Jostle-MS, and Jostle-MD are
comparable, but UAMeTiS and DAMeTiS are almost twice as bad. The number of
cut edges always increases after a repartitioning since the load imbalance factor has
to be reduced.

Our overall conclusions from the results presented in Tables 4.3-4.5 are as
follows. PMeTiS is the best partitioner for Sequence_1 since it is very fast and gives
the highest quality. UAMeTiS and DAMeTiS are faster partitioners but suffer from
poor load balancing quality. Jostle-MS and Jostle-MD, on the other hand, produce
high quality subdomains but require a relatively long time to perform the partition-
ing. In general, we expect global methods to produce higher quality partitions than
diffusive schemes, since they have more flexibility in choosing subdomain boundaries.

The remapping times for all five partitioners are presented in Table 4.6.
Two remapping strategies are used, resulting in different remapping times at each
level. The first strategy uses the default processor mapping given by the respective

partitioners, while the second performs processor reassignment based on our heuristic



85

Table 4.5. Percentage of cut edges before and after mesh partitioning for P=64 using
a variety of partitioners for Sequence_1

PMeTiS | UAMeTiS | DAMeTIS | Jostle-MS | Jostle-MD
Bef | Aft | Bef | Aft | Bel | Aft | Bel | Aft | Bel | ARt

6.61 | 8.95|6.61 | 17.8 | 6.61 | 15.8 | 6.61 | 9.04 | 6.61 | 9.04
10.6 | 13.2 | 22.0 | 25.0 | 19.4 | 23.6 | 10.9 | 144 | 10.8 | 13.8
13.1 1 17.1 | 26.2 | 29.6 | 25.0 | 28.6 | 14.6'| 17.0 | 13.4 | 19.8
9.80|16.4 | 20.7 | 31.9 | 20.3 | 32.3 | 9.54 | 15.1 | 11.5 | 15.0
10.8 | 16.0 | 23.6 | 30.9 | 20.6 | 31.6 | 9.82 | 174 | 9.62 | 15.6
9.65 | 16.7125.6 | 30.8|27.2)3r.2 108|173 }9.11 158
9.38 11581229319 27.930.7)10.6|17.8|9.88|17.2
9.62 | 16.0 | 25.1 | 32.1 | 27.2 | 30.6 | 10.8 | 16.9 | 9.83 | 14.6
9.27 | 158 274 | 31.8 244 26.2{10.0|16.3 | 9.22 | 14.8

|9.86 | 15.1 [ 22.2]29.1]22.1[27.8]10.4]15.7[9.9915.1]

| o o] v o | | x| cofro] —|f b=

l

solution of the similarity matrix. It is important to note here that our heuristic
strategy uses the wremap Weights of the dual graph vertices to minimize the data
remapping cost while the partitioners use the weomp weights. Even though the wremap
values are the correct ones to use, it is not possible for the current versions of
the various partitioners to use them. Several observations can be made from the
results. The default remapping times are the fastest for Jostle-MD. PMeTiS is
about 17% while UAMeTiS and DAMeTiS are about 25% slower. However, the
heuristic remapping times for PMeTiS, Jostle-MS, and Jostle-MD are comparable
while those for UAMeTiS and DAMeTiS are about 40% longer. Also note that our
heuristic remapper reduces the remapping time by more than 28% for PMeTiS and
by about 17% for the Jostle partitioners. However, the improvement is less than 6%
for UAMeTiS and about 11% for DAMeTiS.

It is interesting to note that for Sequence_1, a global partitioner like PMeTiS
results in a significantly lower remapping overhead than its diffusive counterparts.
This seems rather unexpected since the general purpose of diffusive schemes is to

minimize the remapping cost. We believe that this discrepancy is due to the high
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Table 4.6. Remapping time on an SP2 for P=64 using the default and our heuristic
strategies for Sequence_l

PMeTiS UAMeTiS | DAMeTiS | Jostle-MS | Jostie-MD
Def ] Heu | Def [ Heu | Def ] Heu | Def l Heu | Def | Heu

L

1 [117]1.06]125(1.14]123[1.12[1.16 | 1.05] 1.16 | 1.06
212371198234 (2.16 (237 |2.02|232]1.96]|2.32]|1.95
3 [16.38|4.85[5.73]5.46 | 5.63 | 5.24 | 5.14 | 4.88 | 5.07 | 4.84
4 1752618109103 |13.6}12.4|7.16|6.11 | 7.24 | 6.52
5 1119740 (134|127 |125|11.2)11.6 | 7.60 | 8.28 | 7.40
6
7
8
9
A

115766 |11.8|11.6 | 13.0 | 11.9 | 9.45 | 7.49 ] 9.16 | 7.73
104 [ 837(12.7]11.2{11.4|10.6 | 104 | 7.75 | 10.6 | 7.74
11.0[7.87[11.1]10.5]10.2|9.83 {849 |7.61|10.1 | 7.9]
116 7.66 [ 9.83|9.58 | 9.10 | 8.88 | 9.32 | 7.80 | 9.24 | 8.45

[8.19]5.89 [ 8.77 | 8.29 [ 8.79 [ 8.13 [ 7.23 [ 5.81 | 7.02 | 5.96 |

[

growth rate and speed with which our test meshes are evolving. For this class of
problems, globally repartitioning the graph from scratch seems to be more efficient

then attempting to diffuse the rapidly moving adapted region.

4.2.2 SP2 vs. Origin2000

We next compare the relative performance of the SP2 and the Origin2000.
Since we had access to only 32 processors of the Origin2000, experiments on the
SP2 were also run using P = 32 for this case. We paired the number of partitioners
down to two: PMeTiS and DAMeTiS. PMeTiS was chosen because it was the best
partitioner overall. DAMeTiS was chosen over the Jostle partitioners since faster
repartitioning is more important than higher quality in an adaptive-grid scenario.
The partitioning and the remapping times using our heuristic remapping strategy
for Sequence_1 are presented in Table 4.7. Consistent with the results in Table 4.3,
DAMeTiS is slightly faster than PMeTiS on both machines. Consistent with the
results in Table 4.1, run times on the Origin2000 are about half the corresponding
times on the SP2. The DAMeTiS remapping times are higher than PMeTiS, but not

as bad as in Table 4.6. Finally, the remapping times are about three times faster on
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the Origin2000 than on the SP2 as was also shown earlier in Table 4.2.

Table 4.7. Partitioning and remapping times on the SP2 and the Origin2000 for
P=32 using PMeTiS and DAMeTiS for Sequence_1

Partitioning Heuristic Remapping
PMeTiS DAMeTiS PMeTiS DAMeTiS
SP2 | 02000 | SP2 | 02000 | SP2 | 02000 | SP2 | 02000

035 045 |036| 0.44 | 143} 047 | 1.58 | 0.50
042} 020 | 048] 023 |3.19) 1.10 | 2.87| 1.05
0681 033 |0.68}| 030 {549 1.82 |8.86| 2.68
096 | 047 (090 | 044 |[11.0]| 366 |17.5| 6.57
075 0.41 |1.00| 0.40 | 14.1 | 4.62 | 17.7}| 6.30
1.09] 050 |0.75| 0.43 | 154 4.78 | 149 5.83
0.79 | 042 |0.75]| 034 |154 | 4.78 | 153 5.04
1.12 ) 037 |0.80| 032 |15.0] 493 | 133 4.65
086| 034 [080] 034 |157| 504 | 149 4.03

0.78 | 0.39 [0.72] 0.36 |10.7] 3.47 |11.9] 4.07 |

Pl oo~ ol el ] eo| po] || b

)

The quality of load balancing for this experimental case is presented in
Table 4.8. Theoretically, these results should be identical on both machines. How-
ever, since PMeTiS and DAMeTiS use pseudo-random numbers in their codes, the
results were not uniform due to different seeds on the SP2 and the Origin2000. The
results shown in Table 4.8 are obtained on the Origin2000. PMeTiS is once again
better than DAMeTiS, both in terms of the load imbalance factor and the percent-
age of cut edges. These results are consistent with those shown in Tables 4.4 and
4.5; however, the values are smaller here. The load imbalance factors are lower be-
cause fewer processors are used. The percentages of cut edges are smaller since the

surface-to-volume ratio decreases with the number of partitions.

4.2.3 Coarse vs. fine initial mesh
Figure 4.7 presents the partitioning and remapping times using PMeTiS
for the two mesh granularities, Sequence_1 and Sequence_2. Remapping results are

presented only for our heuristic remapping strategy. A couple of observations can be
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Table 4.8. Load imbalance factor and percentage of cut edges before and after mesh
partitioning for P=32 using PMeTiS and DAMeTiS for Sequence_1

Load imbalance factor | Percentage of cut edges
PMeTiS | DAMeTiS | PMeTiS | DAMeTiS
Bef | Aft | Bef | Aft | Bef [ Aft | Bef | Aft

L

1 [358{1.01]3.58 ] 1.88|4.65]6.28 |4.65]|15.7
2 [217{1.04{395(212]7.66]|9.65|19.3]205
31241106490 212|957 |13.2]21.1 253
4 1614 (1.05]9.82|1.87[7.99(12.2|17.1|28.2
5
6
7
8
9

7.3111.03|10.2 | 1.68 | 6.76 | 11.8 | 29.1 | 26.5
788 [1.05(9.12 | 1.41 715 | 11.1 | 253 | 244
7.86 [ 1.04 [ 7.82 | 1.11 | 6.47 | 11.3 | 20.6 | 14.2
8.02 | 1.04 | 6.66 | 1.05 | 6.50 | 11.5 | 10.0 | 13.9
7.92 1 1.05(6.61 | 1.05 | 6.21 | 10.9 | 9.41 | 14.2

[A]592]1.04]6.96]1.59]7.00]10.9[174 203 |

made from the resulting graphs. First, when comparing the two sequences, results
show that the finer mesh increases both the partitioning and the remapping times
by almost an order of magnitude. This is expected since the initial fine mesh is eight
times the size of the initial coarse mesh. The larger graph is thus more expensive to
partition and requires more data movement during remapping. Second, increasing
the number of processors from 16 to 64 does not have a major effect on the par-
titioning times, but causes an almost three-fold reduction in the remapping times.
This indicates that our load balancing strategy will remain viable on a large number
of processors.

Figure 4.8 presents the quality of load balancing for Sequence_1 and Se-
quence_2 using PMeTiS. Load balancing quality is again measured in terms of the
load imbalance factor and the percentage of cut edges. For all the cases, the parti-
tioner does an excellent job of reducing the imbalance factor to near unity. Using a
finer mesh has a negligible effect on the imbalance factor after load balancing, but
requires a substantially longer repartitioning time (cf. Fig. 4.7). The percentage of

cut edges always increases with the number of processors. This is expected since the
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Figure 4.7. PMeTiS partitioning and remapping times using the heuristic strategy
for P=16 and 64 on an SP2 for Sequence_1 and Sequence.2.
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surface-to-volume ratio increases with the number of partitions. Also notice that
the percentage of cut edges generally grows with each level of adaption, and then
stabilizes when the mesh size stabilizes. This is because successive adaptions create
a complex distribution of computationally-heavy nodes in the dual graph, thereby
requiring partitions to have more complicated boundaries to achieve load balance.
This increases the surface-to-volume ratio of the partitions, resulting in a higher
percentage of cut edges. The finer mesh consistently has a smaller percentage of
cut edges because the partitioner has a wider choice of edges to find a better cut.
However, we believe that this savings in the number of cut edges does not warrant
the significantly higher overhead of the finer mesh. Note that a more precise flow
solution can be achieved using the fine mesh since it was adapted one level deeper
than the coarse grid. Nonetheless, we expect our overall conclusions to remain the

same, even if an additional adaption was performed on the coarse mesh.

4.2.4 Growing vs. stable mesh

Lastly, we compare the performance of PMeTiS and DAMeTiS for Se-
quence_3 on 32 processors of the SP2. The reason for this experiment was to in-
vestigate the effect of our load balancing strategy on a mesh that continuously grows
in size through the course of adaption. The partitioning and the remapping times
are presented in Table 4.9. A comparison with the results in Table 4.7 shows that the
partitioning times for both partitioners are almost unchanged. This is because both
Sequence_1 and Sequence_3 use the same initial mesh; thus, the partitioners work
on dual graphs that are topologically identical. The remapping times, however,
are significantly higher for Sequence_3 because of a much larger adapted mesh. Even
though the adaption region is moving with a lower velocity here than for Sequence_1,
the mesh is growing very rapidly, gaining more than two orders of magnitude in only

nine adaption levels. Our heuristic remapper reduces the remapping time by more



92

than 23% for PMeTiS and by almost 17% for DAMeTiS. Once again, the global
repartitioning strategy using PMeTiS produces a lower remapping overhead than

the diffusive scheme.

Table 4.9. Partitioning and remapping times on an SP2 for P=32 using PMeTiS and
DAMeTiS for Sequence_3

Partitioning Remapping

PMeTiS | DAMeTiS
L | PMeTiS | DAMeTiS | Def | Heu | Def | Heu
1 0.34 0.59 1.30 | 1.26 | 1.15 | 1.18
2 0.32 0.34 1.45 | 1.27 | 1.53 | 1.38
3 0.34 0.38 217 1.72 [ 2.39 | 1.95
4 0.60 0.46 5.68 | 4.52 | 4.80 | 4.47
5 0.88 0.75 15.1 | 10.6 { 17.1 | 14.3
6 1.35 0.72 239|164 | 324 | 27.3
7 1.25 1.32 44.2 |1 29.4 | 58.6 | 40.6
8 1.18 0.93 53.8 | 39.3 | 86.9 | 71.2
9 0.95 0.76 50.5 | 47.8 | 81.7 | 75.4

[A] 080 | 069 [220]16.9]31.8[264|

The quality of load balancing is presented in Table 4.10. PMeTiS is once
again significantly better than DAMeTiS in terms of the load imbalance factor.
Compared to the corresponding results in Table 4.8, the imbalance factor after mesh
repartitioning is higher, particularly for DAMeTiS. This is due to the lower speed
of the adapted region, which increases the maximum values of Weomp aNd Weomm 1N
the dual graph. This, in turn, limits the efficacy of the partitioner to balance the
mesh, since certain nodes have become very heavy. An additional side effect is that
the percentage of cut edges are significantly worse for Sequence_3 than for the higher
speed simulation of Sequence_1, shown in Table 4.8. Nonetheless, a near perfect load
balance is achieved by PMeTiS for this test case, even though it is partitioning the
dual of an initial mesh which has grown by over 120-fold in only nine adaptions.
This indicates that our dual graph scheme with adjustable vertex and edge weights

can be successfully used even when the mesh is growing significantly and rapidly.
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Table 4.10. Load imbalance factor and percentage of cut edges before and after mesh
partitioning for P=32 using PMeTiS and DAMeTiS for Sequence_3

Load imbalance factor | Percentage of cut edges
PMeTiS | DAMeTiS | PMeTiS | DAMeTiS
Bef | Aft | Bef | Aft | Bef | Aft | Bef | Aft

L

11189103 )1.891.13|4.70|4.73|4.70]6.75
21446103 143111.39|4.75|6.85|8.82| 15.5
3 1326104378237 ]11.620.8|295] 258
4 1217 ]1.08|3.99 275|286 | 344 |36.6|33.3
5 1231]1.03}4.33|3.08(34.2|47.7|33.6 | 42.2
6
7
8
9
A

3.80 | 1.08 | 5.69 | 2.59 | 40.4 | 49.6 | 41.7 | 44.8
3.59 1115 3.72 | 297 | 41.3 | 489 | 394 | 444
4.06 | 1.13 | 8.26 | 2.42 | 37.6 | 444 | 42.4 | 42.6
445 | 1.15|5.26 | 2.09 | 37.2 | 45.5 | 36.8 | 444

13.33]1.08[4.58[2.31[26.7]33.7]30.4]33.3]




CHAPTER 5
SUMMARY AND FUTURE WORK

5.1 Summary

Simulation of large-scale transient flows around complex geometric bodies
is a common challenge in many fields of computational fluid dynamics. To address
these problems there is a demonstrable need for unstructured mesh adaptivity on
multiprocessor systems. Efficient implementations of these procedures is a complex
task primarily due to the load imbalance resulting from the dynamically changing
nonuniform grids. In this thesis we have developed PLUM, an automatic portable
framework for performing large-scale numerical computations in a message-passing
environment.

The most significant contribution of this thesis is the development and
validation of a load balancing methodology with a global view. In Chapter 1, we
presented a historical everview.of techniques used to balance adaptive unstructured -
mesh computations. Most previous efforts have relied on locally diffusive schemes,
since it was generally considered too expensive to repartition the entire domain in
the inner loop of an adaptive flow calculation. We also assert that local iterative
techniques are not ideally suited for dynamically balancing unsteady flows. These ap-
plications are prone to dramatically shifting the load distribution between adaption
phases, causing small regions of the domain to suddenly incur high computational
costs. Local diffusion techniques are therefore required to perform many iterations
before global convergence, or accept an unbalanced load in exchange for faster per-
formance. Also, by limiting task movement to nearest neighbors, a finite element

may have to make several hops before arriving at its final destination. Finally, global
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schemes will generally produce superior subdomain quality, since they are not re-
stricted to nearest neighbor communications. In order to develop an effective global
balancing scheme, we needed to mitigate the potentially high cost of partitioning and
data remapping. Additionally, a successful framework has be portable and remain
viable on a large number of processors. We have demonstrated that PLUM achieves
these criteria on realistic-sized meshes for both steady and unsteady simulations.

In Chapter 2, we presented our distributed memory implementation of the
tetrahedral mesh adaption scheme developed by Biswas and Strawn [12]. The parallel
code consists of approximately 3,000 lines of C++ with MPI which wraps around the
original version written in C. The serial code was left almost completely unchanged
except for a few lines which interface with the parallel wrapper. This allowed us
to design the parallel version using the serial code as a building block. The object-
oriented approach maintains to build a clean interface between the two layers of
the program while maintaining efficiency. Only a slight increase in memory was
necessary to keep track of the global mappings and shared processor lists for objects
located on partition boundaries.

Six refinement and two coarsening cases were presented with varying frac-
tions of a realistic-sized domain being targeted for refinement. - We have shown -
extremely promising parallel performance of more than 52.5X on 64 processors of
an SP2 when about 60% of the computational mesh used to simulate a helicopter
acoustics experiment was dynamically refined, using a solution-based error indica-
tor. Performance was significantly improved by repartitioning and remapping the
mesh in a load-balanced fashion after edges were targeted for refinement but before
performing the actual subdivision.

Chapter 3 presented PLUM, our dynamic load balancing framework. Sev-
eral salient features of this methodology were described: (i) a dual graph represen-

tation, (ii) parallel mesh repartitioning, (iii) optimal and heuristic remapping cost
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functions, (iv) efficient data movement and refinement schemes, and (v) accurate
metrics comparing the computational gain and the redistribution cost. Large-scale
scientific computations on an SP2 showed that load balancing can significantly re-
duce flow solver times over non-balanced loads. With multiple mesh adaptions, the
gains realized with load balancing may be even more dramatic.

Using the dual graph representation of the initial mesh for the purpose of
partitioning is one of the key features of this work. New computational grids obtained
by adaption are translated to the weights wcomp and Wremap for every vertex and to
the weight womm for every edge in the dual mesh. As a result, the complexity of
the dual graph remains unchanged during the course of an adaptive computation.
Therefore, the repartitioning times depend only on the initial problem size and the
number of partitions - but not on the size of the adapted mesh.

We performed two different tests on PLUM using a realistic-sized compu-
tational mesh on an SP2. The first strategy targeted varying fractions of the initial
tetrahedral mesh for refinement while the second strategy consisted of three suc-
cessive levels of adaption. Results indicated that by using a high quality parallel
partitioner to rebalance the mesh, a perfectly load balanced flow solver is guaran-
teed with minimal communication overhead.

An important contribution of this research is our development of the pro-
cessor reassignment phase. The goal is to find a mapping between partitions and
processors such that the data redistribution cost is minimized. In general, the num-
ber of new partitions is an integer multiple F of the number of processors. Each
processor is then assigned F unique partitions. The rationale behind allowing mul-
tiple partitions per processor is that performing data mapping at a finer granularity
reduces the volume of data movement at the expense of partitioning and processor
reassignment times. Various cost functions are usually needed to solve the processor

reassignment problem for different architectures. We present three general metrics:
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TotalV, MaxV, and MaxSR which model the remapping cost on most multiprocessor
systems. The metric TotalV assumes that by reducing network contention and the
total number of elements moved, the remapping time will be reduced. The MaxV and
MaxSR metrics, on the other hand, considers data redistribution in terms of solving
a load imbalance problem, where it is more important to minimize the workload of
the most heavily-weighted processor than to minimize the sum of all the loads. In
general, the overall objective function may need to use a combination of metrics to
effectively incorporate all related costs. Optimal solutions for all three metrics, as
well as a heuristic approach were implemented. It was shown that our heuristic al-
gorithm quickly finds high quality solutions for all our metrics. Additionally, strong
theoretical bounds on the heuristic time and solution quality were presented.

Once the reassignment problem is solved, a model is needed to quickly pre-
dict the expected redistribution cost on a given architecture, to ensure that it is more
than compensated for by the computational gain of balanced partitions. Accurately
estimating this time is very difficult due to the large number and complexity of the
costs involved in the remapping procedure. The computational overhead includes
rebuilding internal data structures and updating shared boundary information. The
communication overhead is architecture-dependent and can be difficult to predict, es-
pecially for the many-to-many collective communication pattern used by the remap-
per. We developed a new remapping cost model for the SP2, and quantitatively
validated its accuracy in predicting redistribution overhead. Results indicated that
reducing the bottleneck, rather than the aggregate, overhead guarantees a reduction
in the total redistribution time.

The remapping phase is responsible for physically moving data when it
is reassigned to a different processor, and is generally the most expensive phase
of any load balancing strategy. In this thesis, we made the key observation that

data remapping for a refinement step should be performed after the marking phase,
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but before the actual subdivision. Because the refinement patterns are determined
during the marking phase, the weights of the dual graph can be adjusted as though
subdivision has already taken place. Based on the updated dual graph, the load
balancer proceeds in generating a new partitioning, computing the new processor
assignments, and performing the remapping on the original unrefined grid. Since a
smaller volume of data is moved using this technique, a significant cost savings can
be achieved. This efficient remapping strategy resulted in almost a four-fold cost
savings for data movement when 60% of the computational mesh was refined.

Several experiments were performed in Chapter 4 to verify the effective-
ness of PLUM on sequences of dynamically adapted unstructured grids. Results
demonstrated that our framework works well for both steady and unsteady adaptive
problems with many levels of adaption, even when using a coarse initial mesh. We
showed that our dual graph scheme with adjustable vertex and edge weights can
be successfully used even when the mesh is growing significantly and rapidly. A
comparison of coarse and fine initial grids was presented to evaluate the relationship
between dual mesh granularity and load balancing performance. We found that a
finer starting mesh may be used to achieve lower edge cuts and marginally better load
balance, but is generally not worth the increased partitioning and data remapping
times.

Portability was examined by comparing results between the distributed-
memory system of the IBM SP2, and the Scalable Shared-memory MultiProcessing
(S2MP) architecture of the SGI/Cray Origin2000. The refinement procedure showed
promising parallel results and achieved an efficiency of more than 87% on 32 pro-
cessors of both the SP2 and the Origin2000, for our largest test case. Additionally,
the performance of all our load balancing modules were similar on both architec-

tures. These results demonstrated that PLUM can be effectively ported to different
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platforms without the need for any code modifications. We also applied the SP2 re-
distribution cost model to the Origin2000, but with limited success. Future research
will address the development of a more comprehensive remapping cost model for the
Origin2000.

Finally, we conducted a repartitioning analysis by examining the perfor-
mance of five, state-of-the-art parallel partitioners within PLUM. We found that a
global partitioner like PMeTiS significantly outperforms its diffusive counterparts,
for both remapping overhead and subdomain quality. In general, global methods are
expected to produce higher quality partitions than diffusive schemes, since they have
more flexibility in choosing subdomain boundaries. We believe that the discrepancy
in remapping overhead is due to the high growth rate and speed with which our
test meshes evolved. These results validate our earlier claim that for this class of un-
steady problems, globally repartitioning the graph from scratch is more efficient then
attempting to diffuse the rapidly moving adapted region. Additionally, we showed
that the data redistribution overhead can be reduced by applying our heuristic pro-
cessor reassignment algorithm to the default partition-to-processor mapping given

by all five partitioners.

5.2 Future Work

There are many extensions that can be made to the work presented here.
First, we plan to interface PLUM with a parallel flow solver system. The combination
of these two components should allow us to compute solutions for systems which
were previously unsolvable. Additionally, new insight will be gained by observing the
sustained performance of PLUM. We also plan to investigate the relationship between
subdomain quality and flow solver performance. Currently the total edge cut is used
as the standard metric for evaluating partition quality. We believe that a more

sophisticated model is needed in order to accurately predict flow solver overhead.
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Several extension can be made to the processor reassignment phase. In
Sec. 3.5 we developed a technique for assigning F > 1 unique partitions to each pro-
cessor using the TotalV metric. A similar algorithm for the MaxV and MaxSR metrics
could be developed, since it is currently limited a to one-to-one mapping between
partitions and processors. An extensive analysis could determine the effectiveness of
setting F > 1. By having multiple partitions assigned to each processor we may re-
duce the remapping overhead, at the expense of higher partitioning times and disjoint
subdomains. We can also extend the similarity matrix construction and processor
reassignment phase to consider processor locality. Some architectures, such as the
hypercube or 3D-torus, can require multiple message hops between two communi-
cating processors. Additionally, hierarchical interconnection layers can affect the
relative cost of each hop. These additional parameters could be incorporated into
our framework for these architectures, in order to minimize and predict remapping
overhead.

Finally, we would like to compare our message-passing implementation of
PLUM with other programming paradigms, such as CC-NUMA and multithread-
ing. A drawback of our MPI load balancing system is the high computation and
communication overhead incurred during redistribution. A multithreading approach
may be used as a means of exploring concurrency in the processor level in order
to tolerate synchronization costs inherent in traditional nonthreaded systems. Pre-
liminary results indicate that multithreading can be used as a mechanism to mask
the overheads required for the dynamic balancing of processor workloads, with the
computations required for the actual numerical solution of PDEs [17]. Unfortu-
nately multithreading complicates program complexity and makes code reusability
a difficult task. Another drawback of the current PLUM implementation is the code

complexity resulting from explicit message passing. CC-NUMA offers the advantage
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of a global address space with automatic page migration. As a result, code develop-
ment time should be considerably lower than the MPI implementation. A potential
disadvantage of this approach, however, is the degradation of parallel performance as
the number of processors increases. A comparison of all three programming method-

ologies would provide an extremely valuable analysis.
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